
 HOW TO MAKE 
 your own 
 PLUGINS 
 in WordPress 
 A Comprehensive Guide to become 
 easily a  WordPress plugin developer 

 By Vangelis Kakouras - www.studiowdev.click 



 Preface 

 This e-book is for anyone interested in creating their own custom WordPress plugins. 
 Whether you’re an experienced developer looking for a refresher, or a newbie just getting 
 started with WordPress, this guide will help you develop the skills you need to create your 
 own WordPress plugins with ease. 

 We’ll cover everything from the basics of WordPress plugin development to advanced topics 
 like security and optimization. You’ll learn how to write clean code, build custom interfaces, 
 and extend existing plugins. We’ll also take a look at how to debug and troubleshoot your 
 plugins, and provide tips on how to make sure your plugins are secure and perform well. 

 By the end of this e-book, you’ll have the skills and knowledge you need to build your own 
 custom WordPress plugins. So, don't be afraid to take the plunge and start coding - after all, 
 what's the worst that could happen? You could end up with a website in need of a plugin to 
 fix it! 

 Vangeli� Kakoura� 
 ATHENS - February 2023 

 *  Dedicated to all of my IT instructors at DIΕK Markopoulou  for their willingness and 
 drivenness to lead me on that beautiful learning travel together with all co-students of class 
 2023. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 2 

http://www.studiowdev.click/


 Table of Contents 
 Preface 

 Introduction 
 What is a WordPress plugin 
 Why create a WordPress plugin 
 Who should read this book 
 What you will learn 

 Setting up Your Development Environment 
 Understanding the WordPress Plugin Development Process 
 Installing a local development environment 
 Setting up a development workspace 
 Understanding the anatomy of a WordPress plugin 

 Creating Your First WordPress Plugin 
 Writing the plugin header 
 Creating a new plugin file 
 Writing your first plugin function 
 Testing your plugin 

 Adding Functionality to Your Plugin 
 Understanding WordPress actions and filters 
 Adding settings to your plugin 
 Creating custom post types 
 Adding metaboxes to the post editor 
 Working with custom fields 

 User Interaction and Front-end Development 
 Understanding the WordPress Template Hierarchy 
 Creating shortcodes 
 Using template tags 
 Creating custom pages 
 Integrating with JavaScript and jQuery 

 Securing Your WordPress Plugin 
 Understanding WordPress security 
 Protecting against XSS attacks 
 Securing your plugin data 
 Best practices for securing WordPress plugins 

 Optimizing Your Plugin for Performance 
 Understanding WordPress performance optimization 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 3 

http://www.studiowdev.click/


 Minimizing HTTP requests 
 Optimizing database queries 
 Using caching to improve performance 

 Deploying and Distributing Your WordPress Plugin 
 Preparing your plugin for distribution 
 Creating a readme file 
 Submitting your plugin to the WordPress plugin repository 
 Distributing your plugin through other channels 

 Conclusion 
 Summary of what you learned 
 Next steps 
 Additional resources 
 Final thoughts 

 Appendices 
 Examples & Instructions of code ready WordPress plugins 

 1.  Code for a simple cashing Wordpress plugin 
 2. Code for a simple performance Wordpress plugin 
 3. Code for a simple SEO optimization plugin for WordPress. 
 4. Code for a simple Backup and Recovery Wordpress plugin 
 5. Code for an Image Optimization Wordpress plugin 
 6. Code for an Analytics and Tracking Wordpress plugin 
 7. Code for a simple Security and Protection Wordpress plugin 
 8. Code for a Greetings Wordpress plugin 
 9. Code of a plugin that adds custom widgets to the WordPress dashboard 
 10. Code for a plugin that adds a responsive full-screen slider with customizable 
 images and captions 
 11. Code of a plugin that adds a custom post type for "Books" and displays the latest 
 books on the front-end of the website 
 12. Code for a plugin that adds a custom footer message to all pages of the website 
 13. Code for a plugin that allows users to easily add and customize a contact form 
 14. Code for a basic social sharing button plugin 

 Practical guidances 
 Steps to complete the activation and running of a WordPress plugin 
 The plugin files 
 The anatomy and the structure of the WordPress plugin 
 What is included in the .zip file of a Wordpress plugin 
 The elements that are typically included in a .zip file when creating a WordPress 
 plugin 
 Examples for each of the main files that should be included in a .zip file for a 
 Wordpress plugin 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 4 

http://www.studiowdev.click/


 Introduction 

 What is a WordPress plugin 

 A WordPress plugin is a piece of software that extends the functionality of the WordPress 
 platform. WordPress is an open-source content management system that is widely used for 
 creating websites and blogs. While the core WordPress platform provides a basic set of 
 features, plugins allow users to add custom functionality to their websites, such as adding 
 contact forms, creating custom post types, or integrating with other services. 

 WordPress plugins are written in PHP and utilize WordPress's APIs to interact with the 
 platform. They are easy to install and use, and can be found in the official WordPress plugin 
 repository or on other websites. 

 Plugins can be free or paid, and can range from simple and straightforward to complex and 
 feature-rich. They can be used to perform a wide variety of tasks, such as adding security 
 measures, optimizing website performance, or creating custom user experiences. 

 One of the strengths of WordPress is the ability to extend its functionality through plugins. 
 This allows users to create custom solutions for their specific needs without having to 
 modify the core WordPress platform, making it easy to upgrade to new versions without 
 losing custom functionality. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 5 

http://www.studiowdev.click/


 In summary, a WordPress plugin is a software component that extends the functionality of 
 the WordPress platform and provides custom features and functionality to meet specific 
 needs. 

 Why create a WordPress plugin 

 There are several reasons why one might choose to create a WordPress plugin: 

 Extend Functionality  : WordPress provides a basic set  of features, but plugins allow you to 
 add custom functionality to your website. For example, you could create a plugin to integrate 
 your website with a specific service, add custom post types, or create custom pages. 

 Solve a Problem  : You may have encountered a specific  problem or limitation with your 
 website that you can solve by creating a plugin. By creating a plugin, you can solve your own 
 problem and potentially help others who have the same issue. 

 Enhance User Experience  : Plugins can be used to enhance  the user experience of your 
 website. For example, you could create a plugin to add social sharing buttons, create custom 
 forms, or add a custom login system. 

 Make Money  : If you have the skills to create high-quality  plugins, you can sell them in the 
 official WordPress plugin repository or on other marketplaces. This can be a great way to 
 make money and showcase your development skills. 

 Learning Opportunity  : Creating a WordPress plugin  can be a great learning opportunity. You 
 can learn about WordPress development, PHP programming, and other web development 
 skills while creating a useful tool for yourself or others. 

 Contribute to the WordPress Community  : WordPress is  open source software, and creating 
 a plugin is a way to contribute to the community and help others. Sharing your plugin with 
 others can help make the WordPress platform even better. 

 In conclusion, creating a WordPress plugin can offer a variety of benefits, including the ability 
 to extend functionality, solve specific problems, enhance user experience, make money, 
 provide a learning opportunity, and contribute to the WordPress community. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 6 

http://www.studiowdev.click/


 Who should read this book 

 This book is intended for those who are interested in creating WordPress plugins. It is ideal 
 for: 

 WordPress Developers  : If you are a WordPress developer  looking to expand your skills and 
 add custom functionality to your website, this book will provide you with a comprehensive 
 guide to creating plugins. 

 Entrepreneurs and Small Business Owners  : If you own  a small business or website, you may 
 want to create custom solutions to meet your specific needs. This book will show you how to 
 create plugins to solve problems and add custom functionality to your website. 

 PHP Developers  : If you are a PHP developer looking  to learn more about WordPress 
 development, this book will provide you with the foundation you need to start creating 
 plugins for the platform. 

 Web Designers  : If you are a web designer looking to  expand your skills and add custom 
 functionality to your client's websites, this book will provide you with the knowledge and 
 skills you need to create WordPress plugins. 

 Students and Educators  : If you are a student or educator  looking to learn more about 
 WordPress development, this book provides a comprehensive guide to creating plugins that 
 can be used as a learning tool or as part of a course curriculum. 

 In summary, this book is intended for those who are interested in creating plugins for 
 WordPress, including WordPress developers, entrepreneurs, small business owners, PHP 
 developers, web designers, students, and educators. 

 What you will learn 

 In this book, you will learn about the following topics related to creating plugins for 
 WordPress: 

 Introduction to WordPress Plugins  : You will learn  about the basics of WordPress plugins, 
 including what they are and why they are useful. You will also learn about the WordPress 
 plugin architecture and how plugins interact with the core platform. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 7 

http://www.studiowdev.click/


 Setting Up Your Development Environment:  You will learn how to set up a development 
 environment for creating WordPress plugins, including installing and configuring the 
 necessary software. 

 Creating Your First Plugin  : You will learn how to create a basic WordPress plugin and 
 understand the various components that make up a plugin, including the plugin header, 
 activation and deactivation hooks, and more. 

 Using WordPress Actions and Filters  : You will learn  about the WordPress actions and filters 
 API, which allows you to modify the behavior of the platform and add custom functionality. 

 Working with the WordPress Database  : You will learn  how to interact with the WordPress 
 database to store and retrieve data, including creating custom tables and using the 
 WordPress database API. 

 Adding Settings and Options  : You will learn how to  add settings and options to your plugin, 
 allowing users to customize the functionality of your plugin. 

 Creating Custom Post Types  : You will learn how to  create custom post types, which allow 
 you to extend the default WordPress post type and create custom content types. 

 Integrating with Other Services  : You will learn how  to integrate your plugin with other 
 services, such as APIs or web services, to provide additional functionality. 

 Debugging and Troubleshooting  : You will learn about  common debugging and 
 troubleshooting techniques for WordPress plugins, including using the WordPress Debug 
 Log and the WP_DEBUG constant. 

 Deploying Your Plugin  : You will learn about the various  options for deploying your plugin, 
 including submitting it to the official WordPress plugin repository and selling it on other 
 marketplaces. 

 By the end of this book, you will have the knowledge and skills necessary to create your own 
 custom WordPress plugins, from the basics of plugin development to integrating with other 
 services and deploying your plugin to the world. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 8 

http://www.studiowdev.click/


 Setting up Your Development Environment 

 Understanding the WordPress Plugin Development Process 

 The WordPress plugin development process involves several key steps, including planning, 
 coding, testing, and deploying your plugin. Understanding each step of the process is crucial 
 to creating high-quality plugins that meet the needs of your users. 

 Planning  : The first step in the plugin development  process is to plan your plugin. You will 
 need to determine what problem you want to solve or what functionality you want to add, as 
 well as what features you want to include. This step is important because it helps you 
 determine the scope of your plugin and helps you prioritize your development tasks. 

 Coding  : Once you have planned your plugin, you can  start coding. During this step, you will 
 write the code for your plugin using PHP, HTML, CSS, and JavaScript. It's important to write 
 clean, well-documented code that follows best practices for WordPress plugin development. 

 Testing  : After coding your plugin, you will need to  test it thoroughly to ensure that it works as 
 intended. You should test your plugin on different WordPress versions and with different 
 themes and plugins to ensure compatibility. You should also test your plugin for security 
 vulnerabilities and performance issues. 

 Deploying  : Once you have completed the coding and  testing stages, you can deploy your 
 plugin. You can either make your plugin available for download on the official WordPress 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 9 

http://www.studiowdev.click/


 plugin repository or sell it on other marketplaces. Before deploying your plugin, you should 
 also write documentation to help users understand how to use and install your plugin. 

 Maintenance  : After deploying your plugin, it's important to continue to maintain and update 
 it. You should respond to user feedback and bug reports, as well as make any necessary 
 updates to keep your plugin compatible with new WordPress releases. 

 In conclusion, the WordPress plugin development process involves several key steps, 
 including planning, coding, testing, deploying, and maintenance. By following each step of 
 the process and paying attention to detail, you can create high-quality plugins that meet the 
 needs of your users and enhance the functionality of the WordPress platform. 

 Installing a local development environment 

 A local development environment is a crucial part of the WordPress plugin development 
 process. It allows you to test and debug your plugin on your own computer, without the need 
 for a live website. Setting up a local development environment is relatively straightforward 
 and involves the following steps: 

 Installing a Web Server  : You will need a web server  to host your local WordPress installation. 
 Popular options include Apache and Nginx, and you can install them using a package 
 manager such as Homebrew on macOS or XAMPP on Windows. 

 Installing PHP  : WordPress is written in PHP, so you  will need to install a version of PHP that 
 is compatible with the version of WordPress you are developing for. You can use a package 
 manager such as Homebrew on macOS or the XAMPP installation on Windows to install 
 PHP. 

 Installing a Database  : WordPress uses a database to  store content and settings, so you will 
 need to install a database management system such as MySQL or MariaDB. You can use a 
 package manager such as Homebrew on macOS or the XAMPP installation on Windows to 
 install the database. 

 Installing WordPress  : Once you have your web server,  PHP, and database installed, you can 
 download and install WordPress on your local development environment. You can either 
 download the latest version of WordPress from the official website or use a package 
 manager such as Homebrew on macOS to install it. 

 Configuring WordPress  : After installing WordPress,  you will need to configure it by setting up 
 the database and creating a wp-config.php file with your database credentials. You will also 
 need to set up a virtual host for your local development environment, which allows you to 
 access your local WordPress installation using a URL. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 10 

http://www.studiowdev.click/


 Installing a Code Editor  : Finally, you will need a  code editor to write and edit your WordPress 
 plugins. Popular options include Sublime Text, Atom, and Visual Studio Code. 

 In conclusion, setting up a local development environment is an essential part of the 
 WordPress plugin development process. By following these steps, you can create a 
 development environment on your own computer, allowing you to test and debug your 
 plugins before deploying them to a live website. 

 Setting up a development workspace 

 A development workspace is the environment in which you will be writing, testing, and 
 debugging your WordPress plugin. Setting up a development workspace is an important part 
 of the plugin development process, as it will help you stay organized and efficient as you 
 work. Here are the key steps involved in setting up a development workspace: 

 Choose a code editor  : A code editor is a software  application that allows you to write, edit, 
 and debug code. When choosing a code editor, consider factors such as language support, 
 debugging capabilities, and ease of use. Popular code editors for WordPress plugin 
 development include Sublime Text, Atom, and Visual Studio Code. 

 Install version control software  : Version control  software is used to track changes to your 
 code and collaborate with others. Popular options for version control include Git and SVN. 
 Using version control software allows you to revert to previous versions of your code if 
 needed and makes it easier to collaborate with others on a plugin. 

 Set up a local development environment  : As described  before, a local development 
 environment is a crucial part of the WordPress plugin development process. By setting up a 
 local development environment, you can test and debug your plugin on your own computer, 
 without the need for a live website. 

 Create a plugin boilerplate  : A plugin boilerplate  is a template that provides a starting point 
 for your plugin development. It includes a basic file structure, common functions, and 
 documentation to help you get started quickly. There are several pre-existing plugin 
 boilerplates available online that you can use, or you can create your own. 

 Create a development plan  : A development plan outlines  the steps you will take to create 
 your plugin and the timeline for each step. A development plan helps you stay focused and 
 organized, and it can also help you communicate your progress with others. 

 Keep your workspace organized  : Finally, it's important  to keep your workspace organized as 
 you develop your plugin. Use clear and descriptive file and folder names, and keep your  code 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 11 

http://www.studiowdev.click/


 well-documented. Keeping your workspace organized will help you stay efficient and make it 
 easier to debug your plugin if necessary. 

 In conclusion, setting up a development workspace is an important part of the WordPress 
 plugin development process. By following these steps, you can create an environment that 
 helps you stay organized, efficient, and focused as you develop your plugin. 

 Understanding the anatomy of a WordPress plugin 

 The anatomy of a WordPress plugin refers to its structure and organization, including the 
 different files and elements that make up the plugin. Understanding the anatomy of a 
 WordPress plugin is important for plugin development, as it helps you understand how 
 WordPress plugins are constructed and how they interact with the WordPress platform. Here 
 are the key components of the anatomy of a WordPress plugin: 

 Plugin file header  : The plugin file header is a block  of information located at the top of the 
 main plugin file. It provides information about the plugin, including the plugin name, author, 
 version, and description. The plugin file header is important because it helps WordPress 
 identify and manage the plugin. 

 Functions  : Functions are blocks of code that perform  specific tasks. In WordPress plugins, 
 functions are used to extend the functionality of the platform or add new features. Functions 
 should be well-documented, and they should be organized and structured in a way that 
 makes it easy to understand what they do and how they work. 

 Action hooks  : Action hooks are hooks in the WordPress  platform that allow you to add 
 custom code or functions to specific points in the platform's lifecycle. Action hooks are used 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 12 

http://www.studiowdev.click/


 to extend the functionality of the platform, and they are a key part of the WordPress plugin 
 development process. 

 Filter hooks  : Filter hooks are hooks in the WordPress  platform that allow you to modify the 
 data that is displayed on the website. Filter hooks are used to change the output of the 
 platform, and they are a key part of the WordPress plugin development process. 

 Template tags  : Template tags are WordPress functions  that are used to display content on a 
 website. Template tags are used to access and display information stored in the database, 
 and they are a key part of the WordPress plugin development process. 

 Settings pages  : Settings pages are used to manage  the configuration and settings of a 
 WordPress plugin. Settings pages can be used to set options, manage user accounts, or 
 provide information to the user. 

 CSS and JavaScript:  CSS and JavaScript are used to  style and add interactivity to a 
 WordPress plugin. CSS and JavaScript should be well-organized and separated from the 
 main plugin code, and they should be loaded in a way that does not conflict with other 
 plugins or the WordPress platform. 

 In conclusion, understanding the anatomy of a WordPress plugin is important for plugin 
 development. By understanding the different components of a plugin, you can create 
 well-structured and organized plugins that are easy to understand and maintain. 

 Creating Your First WordPress Plugin 

 Writing the plugin header 

 The plugin header is a crucial part of a WordPress plugin, as it provides information about 
 the plugin to the WordPress platform. The plugin header is located at the top of the main 
 plugin file, and it is used by WordPress to identify and manage the plugin. Here's what you 
 need to know about writing the plugin header: 

 Required information  : The plugin header must include  the following information: 

 Plugin Name  : The name of the plugin. 
 Plugin URI  : The URL of the plugin's homepage. 
 Description  : A brief description of what the plugin  does. 
 Version:  The version number of the plugin. 
 Author  : The name of the plugin's author. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 13 

http://www.studiowdev.click/


 Author URI  : The URL of the author's website. 
 Standard format  : The plugin header should be written  in a standard format, using the 
 following syntax: 

 <?php 
 /* 
 Plugin Name: [Plugin Name] 
 Plugin URI: [Plugin URI] 
 Description: [Description] 
 Version: [Version] 
 Author: [Author] 
 Author URI: [Author URI] 
 */ 

 Encoding  : The plugin header should be encoded using  UTF-8, as this is the standard 
 encoding used by WordPress. 

 Proper commenting  : The plugin header should be properly  commented, using the syntax 
 shown above, to ensure that it is easily readable and understandable. 

 Consistency  : It's important to use a consistent and  standardized format for the plugin 
 header to make it easy for other developers and users to understand the plugin and its 
 information. 

 By writing the plugin header correctly, you can ensure that your plugin is properly identified 
 and managed by the WordPress platform. Additionally, having a well-written plugin header 
 can make it easier for users and developers to understand the purpose and information 
 about your plugin. 

 Creating a new plugin file 

 Creating a new plugin file is the first step in developing a WordPress plugin. The plugin file 
 serves as the main point of entry for your plugin, and it is used to organize and manage all of 
 the code and functionality that make up your plugin. Here's how to create a new plugin file: 

 Choose a unique name  : The first step in creating a  new plugin file is to choose a unique 
 name for your plugin. The name of your plugin should be descriptive, and it should reflect the 
 purpose and functionality of your plugin. 

 Create a new file  : Once you have chosen a unique name  for your plugin, you can create a 
 new file for your plugin. The file should have a .php extension, and it should be saved in the 
 wp-content/plugins directory of your WordPress installation. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 14 

http://www.studiowdev.click/


 Write the plugin header  : Once you have created a new  plugin file, you need to write the plugin 
 header. The plugin header provides information about your plugin, and it is used by 
 WordPress to identify and manage your plugin. 

 Add comments  : Adding comments to your plugin file  can help to make your code more 
 readable and understandable. Comments are blocks of text that describe the purpose and 
 functionality of your code, and they are ignored by the WordPress platform when your plugin 
 is run. 

 Write the plugin code:  After you have written the  plugin header and added comments, you 
 can start writing the code for your plugin. The code you write will depend on the functionality 
 and purpose of your plugin, but it should be well-structured and well-commented to make it 
 easy to understand and maintain. 

 In conclusion, creating a new plugin file is a crucial step in developing a WordPress plugin. 
 By following these steps, you can create a new plugin file that is properly structured and that 
 is ready to be developed and extended with your custom code and functionality. 

 Writing your first plugin function 

 Writing your first plugin function is an exciting step in the development of your WordPress 
 plugin. A plugin function is a piece of code that performs a specific task or set of tasks, and 
 it is the building block of your plugin's functionality. Here's what you need to know about 
 writing your first plugin function: 

 Choose a unique name  : The first step in writing a  plugin function is to choose a unique name 
 for the function. The name of the function should be descriptive, and it should reflect the 
 purpose and functionality of the function. 

 Define the function  : Once you have chosen a unique  name for the function, you can define 
 the function using the following syntax: 

 function  function_name  () { 
 // function code goes here 

 } 

 Write the function code  : After defining the function,  you can write the code that will be 
 executed when the function is called. The code you write will depend on the functionality and 
 purpose of the function, but it should be well-structured and well-commented to make it easy 
 to understand and maintain. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 15 

http://www.studiowdev.click/


 Call the function  : To call the function, you simply  need to use the function name in your 
 code, followed by parentheses: 

 function_name  (); 

 Test the function  : After writing and calling the function,  you should test the function to make 
 sure it works as expected. You can test the function by accessing your WordPress website 
 and checking for any errors or unexpected behavior. 

 In conclusion, writing your first plugin function is an important step in the development of 
 your WordPress plugin. By following these steps, you can create a well-structured and 
 well-commented function that performs a specific task or set of tasks, and that is ready to 
 be integrated into your plugin's functionality. 

 Testing your plugin 

 Testing your plugin is an essential step in the development process, as it helps you identify 
 and fix any bugs or issues before your plugin is released to the public. Here's what you need 
 to know about testing your WordPress plugin: 

 Test in a local development environment:  The first  step in testing your plugin is to test it in a 
 local development environment. This will allow you to test your plugin in a controlled 
 environment, where you can easily make changes and debug any issues that arise. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 16 

http://www.studiowdev.click/


 Test on different versions of WordPress  : It's important  to test your plugin on different 
 versions of WordPress, as different versions of the platform may have different requirements 
 or compatibility issues. 

 Test with different themes and plugins  : You should  also test your plugin with different 
 themes and plugins to make sure it works as expected in different configurations. 

 Test for security vulnerabilities  : Security is a critical  aspect of WordPress plugin 
 development, so you should make sure to test your plugin for any potential security 
 vulnerabilities. 

 Use debugging tools  : Debugging tools, such as the  WordPress Debug Bar and the Query 
 Monitor plugin, can be useful for testing and debugging your plugin. These tools provide 
 information about the performance and behavior of your plugin, and they can help you 
 identify and fix any issues that arise. 

 Conduct user testing  : User testing is another important step in the testing process. By 
 having real users test your plugin, you can get valuable feedback and identify any usability 
 issues that may not have been apparent during your own testing. 

 In conclusion, testing your WordPress plugin is a critical step in the development process. By 
 following these best practices and using the tools and techniques described here, you can 
 ensure that your plugin is of high quality and ready for release to the public. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 17 

http://www.studiowdev.click/


 Adding Functionality to Your Plugin 

 Understanding WordPress actions and filters 

 Understanding WordPress actions and filters is an important aspect of WordPress plugin 
 development. Actions and filters are two of the key mechanisms for extending and 
 customizing the functionality of a WordPress site. Here's what you need to know about 
 WordPress actions and filters: 

 Actions  : Actions are events that occur in WordPress,  such as publishing a post or displaying 
 a page. Plugin developers can use actions to trigger custom code to run at specific points in 
 the WordPress lifecycle. For example, you could use an action to send an email notification 
 every time a new post is published. 

 Filters  : Filters are used to modify data in WordPress  before it is displayed. For example, you 
 could use a filter to automatically add a custom message to the end of every post on your 
 site. Filters are defined with a function that takes one or more parameters, and returns the 
 modified data. 

 Adding actions and filters  : To add an action or filter  to your WordPress plugin, you need to 
 use the add_action or add_filter function, respectively. These functions take two arguments: 
 the name of the action or filter, and the name of the function that will be executed when the 
 action or filter is triggered. 

 Priority and arguments  : When adding an action or filter,  you can also specify a priority, which 
 determines the order in which the function will be executed relative to other functions 
 attached to the same action or filter. Additionally, you can specify arguments, which can be 
 passed to your function when it is executed. 

 Removing actions and filters  : If you need to remove  an action or filter, you can use the 
 remove_action or remove_filter function, respectively. These functions take the same 
 arguments as the add_action and add_filter functions. 

 In conclusion, actions and filters are powerful tools for extending and customizing the 
 functionality of a WordPress site. By understanding how they work and how to use them, you 
 can add new features and functionality to your WordPress plugins, and take your plugin 
 development skills to the next level. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 18 

http://www.studiowdev.click/


 Adding settings to your plugin 

 Adding settings to your WordPress plugin is a common requirement for many plugins. 
 Settings allow your users to customize the behavior of your plugin and configure it to their 
 needs. Here's what you need to know about adding settings to your WordPress plugin: 

 Using the WordPress Settings API  : The WordPress Settings  API is a set of functions that 
 makes it easy to add settings to your plugin. The API provides a standard way of storing and 
 retrieving plugin settings, and it also handles the creation of the settings page in the 
 WordPress admin interface. 

 Creating a settings page  : To create a settings page  for your plugin, you need to call the 
 add_options_page function, and provide a callback function that will display the content of 
 the settings page. In the callback function, you can use the settings_fields and 
 do_settings_sections functions to display the form fields for your plugin settings. 

 Registering plugin settings  : To register your plugin  settings, you need to use the 
 register_setting function, which takes three arguments: the name of the setting, a unique 
 identifier for the setting, and a callback function that will validate the user's input. 

 Displaying form fields:  To display form fields for  your plugin settings, you can use the 
 add_settings_section and add_settings_field functions. The add_settings_section function 
 creates a section of related fields, while the add_settings_field function creates a single form 
 field. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 19 

http://www.studiowdev.click/


 Storing and retrieving plugin settings  : Once your plugin settings are registered, you can 
 store and retrieve the values using the get_option and update_option functions. These 
 functions take the name of the setting as an argument, and allow you to retrieve and update 
 the value in the database. 

 In conclusion, adding settings to your WordPress plugin is a crucial aspect of plugin 
 development, as it allows your users to customize the behavior of your plugin and configure 
 it to their needs. By following these best practices and using the WordPress Settings API, 
 you can add settings to your plugin in a simple, standardized way. 

 Creating custom post types 

 Custom post types are a powerful feature of WordPress that allow you to extend the default 
 post types, such as posts and pages, with your own custom post types. Here's what you 
 need to know about creating custom post types in WordPress: 

 Using the register_post_type function  : To create a  custom post type in WordPress, you need 
 to use the register_post_type function. This function takes a single argument, which is an 
 array of arguments that define the properties of the custom post type. 

 Defining the properties of the custom post type  : When  defining the properties of your 
 custom post type, you can specify a variety of options, including the post type name, the 
 labels for the post type (such as the name of the post type in the WordPress admin 
 interface), the capabilities of the post type (such as the ability to create, edit, or delete 
 posts), and the features that are supported (such as custom fields or post thumbnails). 

 Customizing the user interface:  In addition to defining  the properties of your custom post 
 type, you can also customize the user interface for your custom post type. This can include 
 customizing the columns that are displayed in the WordPress admin interface, adding 
 custom meta boxes for storing additional information about your posts, and creating custom 
 templates for displaying your posts on the front-end. 

 Integrating with other WordPress features  : Custom  post types can also be integrated with 
 other WordPress features, such as custom taxonomies, custom fields, and the WordPress 
 REST API. This allows you to extend the functionality of your custom post type and create 
 complex, data-driven applications. 

 In conclusion, custom post types are a powerful feature of WordPress that allow you to 
 extend the default post types with your own custom post types. By using the 
 register_post_type function and customizing the user interface, you can create custom post 
 types that are tailored to your specific needs, and integrate them with other WordPress 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 20 

http://www.studiowdev.click/


 features to create complex, data-driven applications. 

 Adding metaboxes to the post editor 

 Metaboxes are a powerful feature of WordPress that allow you to add additional information 
 to your posts, pages, and custom post types. Here's what you need to know about adding 
 metaboxes to the post editor in WordPress: 

 Using the add_meta_box function  : To add a metabox  to the post editor in WordPress, you 
 need to use the add_meta_box function. This function takes several arguments, including the 
 ID of the metabox, the title of the metabox, the callback function that displays the contents 
 of the metabox, and the post type where the metabox should be displayed. 

 Creating the callback function  : The callback function  is responsible for displaying the 
 contents of the metabox. This function should output the HTML for the metabox, and can 
 use the get_post_meta function to retrieve any existing metadata for the post. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 21 

http://www.studiowdev.click/


 Saving metabox data  : When the post is saved, the metabox data needs to be saved along 
 with the post. This can be done by using the update_post_meta function, which takes the 
 post ID, the meta key (which is the name of the metadata), and the meta value (which is the 
 value of the metadata) as arguments. 

 Validating metabox data  : It is important to validate  the metabox data before it is saved to 
 ensure that it is safe and correct. This can be done by using the sanitize_text_field function, 
 which removes any dangerous or incorrect characters from the data, or by using other 
 validation functions, such as is_numeric or filter_var. 

 In conclusion, metaboxes are a powerful feature of WordPress that allow you to add 
 additional information to your posts, pages, and custom post types. By using the 
 add_meta_box function and creating a callback function, you can create metaboxes that are 
 tailored to your specific needs, and validate the metabox data before it is saved to ensure 
 that it is safe and correct. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 22 

http://www.studiowdev.click/


 Working with custom fields 

 Custom fields, also known as post meta, are a way to store additional information about a 
 post in WordPress. Here's what you need to know about working with custom fields: 

 Adding custom fields  : Custom fields can be added to  a post through the post editor screen 
 in the WordPress backend, or programmatically using the add_post_meta function. This 
 function takes the post ID, the meta key (which is the name of the custom field), and the 
 meta value (which is the value of the custom field) as arguments. 

 Retrieving custom fields  : Custom fields can be retrieved  using the get_post_meta function, 
 which takes the post ID and the meta key as arguments. This function returns the value of 
 the custom field, which can then be used in your plugin. 

 Updating custom fields  : Custom fields can be updated  using the update_post_meta function, 
 which takes the post ID, the meta key, and the new meta value as arguments. This function 
 updates the value of the custom field for the given post. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 23 

http://www.studiowdev.click/


 Deleting custom fields  : Custom fields can be deleted using the delete_post_meta function, 
 which takes the post ID and the meta key as arguments. This function deletes the custom 
 field for the given post. 

 In conclusion, custom fields are a powerful feature of WordPress that allow you to store 
 additional information about a post. By using the add_post_meta, get_post_meta, 
 update_post_meta, and delete_post_meta functions, you can add, retrieve, update, and delete 
 custom fields in WordPress. 

 User Interaction and Front-end Development 

 Understanding the WordPress Template Hierarchy 

 The WordPress Template Hierarchy is a way for WordPress to determine which template file 
 to use to display a given page or post. It works by looking for the most specific template file 
 that matches the content being displayed, starting with the most specific and working its 
 way down to the least specific. 

 Here's an overview of the WordPress Template Hierarchy: 

 Single Post Template:  For individual posts, WordPress  will first look for a template specific 
 to that post type (e.g. single-{post_type}.php), then for a general single post template 
 (single.php). 

 Page Template  : For individual pages, WordPress will  first look for a template specific to that 
 page (page-{slug}.php or page-{ID}.php), then for a general page template (page.php). 

 Category Template  : For category archive pages, WordPress  will look for a template specific 
 to that category (category-{slug}.php or category-{ID}.php), then for a general category 
 template (category.php). 

 Taxonomy Template  : For taxonomy archive pages (e.g.  tags, custom taxonomies), 
 WordPress will look for a template specific to that taxonomy 
 (taxonomy-{taxonomy}-{term}.php), then for a general taxonomy template 
 (taxonomy-{taxonomy}.php). 

 Author Template:  For author archive pages, WordPress  will look for a template specific to 
 that author (author-{nicename}.php or author-{ID}.php), then for a general author template 
 (author.php). 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 24 

http://www.studiowdev.click/


 Date Template  : For date archive pages, WordPress will look for a general date template 
 (date.php). 

 Archive Template  : For archive pages that don't match  any of the above (e.g. search results), 
 WordPress will look for a general archive template (archive.php). 

 Index Template  : As a last resort, WordPress will use  the index template (index.php) to 
 display content. 

 By understanding the WordPress Template Hierarchy, you can create custom templates for 
 specific types of content, allowing you to display that content in a unique and custom way. 
 Additionally, you can use the hierarchy to determine which template file you need to modify 
 in order to change the display of a specific type of content. 

 Creating shortcodes 

 Shortcodes in WordPress are a way to easily add complex or reusable functionality to your 
 posts and pages using simple, easy-to-remember code. Essentially, they're a way to embed a 
 function or a piece of content into a post or page using a short, simple code, rather than 
 having to write the full code every time you want to use it. 

 To create a shortcode in WordPress, you'll need to write a function that generates the 
 content you want to display and then wrap that function in a shortcode tag. Here's an 
 example: 

 function  my_shortcode_function  () { 
 return  'This is my shortcode content'  ; 

 } 

 add_shortcode(  'my_shortcode'  ,  'my_shortcode_function'  ); 

 In this example, the function my_shortcode_function returns the string 'This is my shortcode 
 content', and the add_shortcode function maps the shortcode [my_shortcode] to that 
 function. 

 Once you've added your shortcode, you can use it in your posts or pages by typing the 
 shortcode tag [my_shortcode] wherever you want the shortcode content to appear. 

 You can also pass attributes to your shortcode, allowing you to customize its behavior or 
 display. For example: 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 25 

http://www.studiowdev.click/


 function  my_shortcode_function  ( $atts ) { 
 $atts = shortcode_atts( 
 array  ( 
 'text'  =>  'Default Text'  , 

 ), 
 $atts, 
 'my_shortcode' 

 ); 

 return  $atts[  'text'  ]; 
 } 

 add_shortcode(  'my_shortcode'  ,  'my_shortcode_function'  ); 

 In this example, the shortcode accepts an attribute text, which can be set using the syntax 
 [my_shortcode text="Custom Text"]. If the attribute is not set, it will default to Default Text. 

 Shortcodes are a powerful tool for adding complex or repetitive functionality to your 
 WordPress site. With a little bit of code, you can create custom shortcodes that do anything 
 from displaying an image gallery to generating complex forms, making it easier to manage 
 and display complex content in your posts and pages. 

 Using template tags 

 Template tags in WordPress are functions that allow you to retrieve and display information 
 in your theme templates. They are an essential part of the WordPress theme development 
 process, and are used to display things like post content, categories, dates, and more. 

 Using template tags is simple. To retrieve information, you just need to call the appropriate 
 template tag function in your theme template file. For example, to display the title of a post, 
 you would use the following code: 

 <h1>  <?php  the_title();  ?>  </h1> 

 In this example, the the_title function retrieves the title of the current post and outputs it in 
 an h1 tag. 

 There are many different template tags available in WordPress, covering a wide range of 
 information and functionality. Some of the most commonly used include: 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 26 

http://www.studiowdev.click/


 the_title: Displays the title of a post or page. 
 the_content: Displays the content of a post or page. 
 the_excerpt: Displays a short summary of a post's content. 
 the_date: Displays the date of a post or page. 
 the_category: Displays the categories of a post. 
 Template tags can also accept parameters, allowing you to customize the information they 
 retrieve and display. For example, the the_date function can accept a format string, allowing 
 you to customize the format of the displayed date. 

 Using template tags is an effective and easy way to retrieve and display information in your 
 WordPress themes. By using the right template tag for the job, you can quickly and easily 
 build complex and dynamic WordPress websites without having to write complex code. 

 Creating custom pages 

 In WordPress, custom pages refer to pages that are not part of the standard pages provided 
 by the platform, such as the home page, blog page, or about page. Custom pages are 
 typically created to provide unique functionality or content for a website. 

 To create a custom page in WordPress, you need to take the following steps: 

 Create a new template file in your theme  : Custom pages  are created using a custom 
 template file in your theme. To create a new template file, you need to create a new file in 
 your theme directory and name it according to the custom page you want to create. For 
 example, if you want to create a custom contact page, you could name the file 
 page-contact.php. 

 Add the template header to the file  : To make WordPress  recognize the new template file as 
 a custom page template, you need to add a template header to the top of the file. The header 
 should include the following code: 

 <?php 
 /* 
 Template Name: Contact Page 
 */ 
 ?> 

 Add content to the template file  : Once you have created  the template file and added the 
 header, you can add the content and functionality for your custom page. You can use any 
 combination of HTML, PHP, and WordPress template tags to build your custom page. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 27 

http://www.studiowdev.click/


 Create a new page in WordPress  : To create a new custom  page in WordPress, you need to 
 go to the Pages section of the WordPress admin area and click the "Add New" button. On the 
 new page editor, you can select the custom page template you created in the "Page 
 Attributes" section on the right-hand side. 

 Publish the page  : Once you have added the content  to your custom page, you can publish it 
 by clicking the "Publish" button in the WordPress editor. Your custom page will now be live 
 and accessible to visitors. 

 By following these steps, you can create custom pages in WordPress that are tailored to your 
 specific needs and provide unique functionality or content for your website. Whether you 
 need a custom contact page, portfolio page, or any other type of custom page, you can 
 easily create one using the custom page template system in WordPress. 

 Integrating with JavaScript and jQuery 

 JavaScript and jQuery are powerful tools for adding interactivity and dynamic behavior to 
 your WordPress plugin. Integrating these technologies into your plugin can enhance the user 
 experience and make your plugin more flexible and dynamic. 

 Here are some of the key steps to integrating JavaScript and jQuery into your WordPress 
 plugin: 

 Enqueue your scripts  : To ensure that your JavaScript  and jQuery code is properly loaded on 
 your plugin's pages, you need to enqueue your scripts in your plugin. This can be done using 
 the wp_enqueue_script function in WordPress. 

 Choose the right approach  : There are two main approaches  to integrating JavaScript and 
 jQuery into your plugin. The first approach is to add your code directly to your plugin, using 
 the wp_enqueue_script function. The second approach is to use a JavaScript framework or 
 library, such as React or Vue.js, to build your plugin. 

 Localize your scripts  : If you need to pass data from  your plugin to your JavaScript code, you 
 can use the wp_localize_script function in WordPress. This function allows you to pass 
 variables from your plugin to your JavaScript code, making it easier to work with dynamic 
 data in your plugin. 

 Use the jQuery API  : jQuery is a popular JavaScript  library that provides a rich set of APIs for 
 working with HTML, CSS, and JavaScript. By integrating jQuery into your plugin, you can 
 easily add dynamic behavior to your plugin, such as animation, AJAX requests, and more. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 28 

http://www.studiowdev.click/


 Test your code:  Once you have integrated your JavaScript  and jQuery code into your plugin, it 
 is important to test your code to make sure that it works as expected. You can use tools like 
 the JavaScript console in your browser's developer tools to debug your code and identify any 
 issues. 

 By following these steps, you can integrate JavaScript and jQuery into your WordPress plugin 
 and add dynamic, interactive functionality to your plugin. Whether you want to add 
 animations, dynamic content, or complex user interfaces, integrating JavaScript and jQuery 
 into your plugin can help you create the best possible user experience for your users. 

 Securing Your WordPress Plugin 

 Understanding WordPress security 

 WordPress is one of the most popular content management systems in the world, and as 
 such, it is a frequent target of cyber attacks. As a WordPress plugin developer, it's important 
 to understand the basics of WordPress security and how to make your plugin as secure as 
 possible. 

 Here are some key aspects of WordPress security that you should be aware of: 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 29 

http://www.studiowdev.click/


 Input validation  : One of the most common security vulnerabilities in WordPress is user input 
 validation. When your plugin accepts user input, it's important to validate that input to ensure 
 that it's safe and does not contain any malicious code. 

 Nonces  : Nonces are a type of security token that are  used to ensure that requests to your 
 plugin are legitimate. When you create a form or other type of request that accepts user 
 input, you should include a nonce to prevent cross-site request forgery (CSRF) attacks. 

 Escaping  : Escaping is the process of converting user  input into a safe format that can be 
 displayed in HTML without causing security vulnerabilities. When you output user input in 
 your plugin, it's important to properly escape that input to prevent cross-site scripting (XSS) 
 attacks. 

 File permissions  : Another common security vulnerability  in WordPress is improper file 
 permissions. When you create files and directories in your plugin, it's important to set the 
 correct permissions to prevent unauthorized access to sensitive information. 

 Regular updates  : WordPress is updated regularly to  fix security vulnerabilities and other 
 issues. As a plugin developer, it's important to keep your plugin updated to ensure that it's 
 secure and functioning properly. 

 By following these best practices, you can help ensure that your WordPress plugin is secure 
 and protects your users' data. Additionally, it's important to stay informed about the latest 
 security threats and vulnerabilities in WordPress and to take action as needed to keep your 
 plugin secure. 

 Protecting against XSS attacks 

 Cross-Site Scripting (XSS) attacks are a common security vulnerability in web applications, 
 including WordPress. In an XSS attack, an attacker is able to inject malicious code into a 
 website, which is then executed by the user's browser. This can lead to a variety of security 
 problems, such as stealing sensitive information, compromising user accounts, and more. 

 Here are some steps you can take to protect against XSS attacks in your WordPress plugin: 

 Escaping user input:  Whenever you display user input  in your plugin, it's important to 
 properly escape that input. Escaping is the process of converting user input into a safe 
 format that can be displayed in HTML without causing security vulnerabilities. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 30 

http://www.studiowdev.click/


 Using nonces  : Nonces are a type of security token that can be used to prevent XSS attacks. 
 When you create a form or other type of request that accepts user input, you should include 
 a nonce to prevent cross-site request forgery (CSRF) attacks. 

 Validating user input  : It's important to validate  user input to ensure that it's safe and does 
 not contain any malicious code. For example, you can use PHP functions like filter_var() or 
 preg_match() to validate user input before processing it. 

 Sanitizing user input:  Sanitization is the process  of cleaning up user input to make it safe. 
 For example, you can use the sanitize_text_field() function in WordPress to sanitize user 
 input before displaying it. 

 Keeping your plugin updated  : WordPress is updated  regularly to fix security vulnerabilities 
 and other issues. As a plugin developer, it's important to keep your plugin updated to ensure 
 that it's secure and functioning properly. 

 By following these best practices, you can help protect against XSS attacks and keep your 
 users' data secure. Additionally, it's important to stay informed about the latest security 
 threats and vulnerabilities in WordPress and to take action as needed to keep your plugin 
 secure. 

 Securing your plugin data 

 Securing your plugin data is critical to protecting your users and ensuring the proper 
 functioning of your WordPress plugin. Here are some steps you can take to secure your 
 plugin data: 

 Use encryption  : Encryption is the process of converting  data into a secure, encrypted format 
 that can only be decrypted by authorized users. You can use encryption to protect sensitive 
 information stored in your plugin, such as passwords, API keys, and more. 

 Use secure storage  : Store sensitive information, such  as passwords and API keys, in a 
 secure location that is protected from unauthorized access. This could be a secure database 
 or a configuration file that is stored outside of the web root. 

 Use secure authentication  : Use secure authentication  methods, such as password hashing 
 and salting, to ensure that user passwords are protected from theft and unauthorized 
 access. 

 Validate user input:  Validate all user input before  processing it to ensure that it does not 
 contain any malicious code or data. This can help prevent attacks such as SQL injection and 
 cross-site scripting (XSS). 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 31 

http://www.studiowdev.click/


 Keep your plugin updated  : WordPress and its plugins  are updated regularly to fix security 
 vulnerabilities and other issues. As a plugin developer, it's important to keep your plugin 
 updated to ensure that it's secure and functioning properly. 

 By following these best practices, you can help secure your plugin data and protect your 
 users' information. Additionally, it's important to stay informed about the latest security 
 threats and vulnerabilities in WordPress and to take action as needed to keep your plugin 
 secure. 

 Best practices for securing WordPress plugins 

 Securing a WordPress plugin is essential to protecting your users and ensuring the proper 
 functioning of your plugin. Here are some best practices for securing WordPress plugins: 

 Keep your code updated  : Regularly update your plugin  code to fix any security vulnerabilities 
 and ensure that it is functioning properly. Keep an eye on the WordPress security blog and 
 other security-related resources to stay informed about the latest threats and vulnerabilities. 

 Use secure coding practices  : Follow secure coding  practices, such as escaping user input, 
 sanitizing data, and avoiding the use of eval(), to help prevent common security threats such 
 as SQL injection and cross-site scripting (XSS). 

 Validate all input:  Validate all user input before  processing it to ensure that it is safe and 
 does not contain any malicious code or data. This includes form submissions, GET and 
 POST requests, and data stored in the database. 

 Store sensitive data securely  : Store sensitive data,  such as passwords and API keys, in a 
 secure location that is protected from unauthorized access. This could be a secure database 
 or a configuration file that is stored outside of the web root. 

 Use encryption  : Encrypt sensitive data, such as passwords  and API keys, to prevent 
 unauthorized access and ensure that it is secure even if it is intercepted. 

 Use nonces  : Use nonces to ensure that actions taken  by users are valid and authorized. 
 Nonces are unique tokens that can be used to verify the authenticity of a request. 

 Monitor for vulnerabilities  : Regularly monitor your  plugin for vulnerabilities and take action 
 as needed to address any security issues. 

 By following these best practices, you can help secure your WordPress plugin and protect 
 your users from security threats. Additionally, it's important to stay informed about the latest 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 32 

http://www.studiowdev.click/


 security threats and vulnerabilities in WordPress and to take action as needed to keep your 
 plugin secure. 

 Optimizing Your Plugin for Performance 

 Understanding WordPress performance optimization 

 Understanding and optimizing the performance of a WordPress plugin is important for 
 providing a fast, responsive, and enjoyable user experience. Here are some key concepts to 
 keep in mind when optimizing the performance of a WordPress plugin: 

 Load time  : Minimize the load time of your plugin by  reducing the size of your code and 
 assets, optimizing images, and reducing the number of HTTP requests. 

 Resource utilization  : Optimize the use of resources  such as memory, CPU, and database 
 queries to ensure that your plugin does not consume excessive resources and slow down 
 the site. 

 Caching:  Implement caching strategies to reduce the  number of database queries and 
 improve the speed of your plugin. WordPress has built-in caching functions, but you may 
 also want to consider using a caching plugin or other performance optimization tools. 

 Minification  : Minify your code and assets to reduce  the size of your plugin and improve load 
 times. Minification involves removing unnecessary whitespace, comments, and other 
 elements that are not required for the plugin to function. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 33 

http://www.studiowdev.click/


 Compression  : Compress your code and assets to reduce the size of your plugin and improve 
 load times. Compression involves using techniques such as gzip to reduce the size of your 
 plugin files. 

 Database optimization  : Optimize the database by using  appropriate indexing, reducing the 
 number of queries, and reducing the amount of data stored in the database. 

 By understanding and optimizing these key performance factors, you can ensure that your 
 WordPress plugin runs quickly, efficiently, and provides a great user experience. Additionally, 
 performance optimization is important for ensuring the scalability of your plugin and 
 ensuring that it can handle increased traffic and usage over time. 

 Minimizing HTTP requests 

 Minimizing HTTP requests is an important aspect of performance optimization in WordPress 
 plugin development. HTTP requests are used to load resources such as images, scripts, 
 stylesheets, and other assets, and they can add significant latency to the load time of your 
 plugin. 

 Here are some strategies for minimizing HTTP requests in WordPress plugins: 

 Combine files  : Combine multiple CSS and JavaScript  files into a single file to reduce the 
 number of HTTP requests. This will reduce the overhead of sending multiple requests and 
 improve the overall speed of your plugin. 

 Use sprites  : Combine multiple images into a single  sprite image and use CSS to display the 
 desired portion of the sprite. This reduces the number of HTTP requests required to load 
 multiple images and improves the speed of your plugin. 

 Optimize images  : Optimize images for the web by compressing  them and reducing their 
 size. This will reduce the size of your images and reduce the time required to load them, 
 minimizing the number of HTTP requests required. 

 Lazy load images  : Lazy load images by deferring the  loading of images until they are 
 needed. This reduces the number of HTTP requests required to load images and improves 
 the overall speed of your plugin. 

 Use a content delivery network (CDN)  : A CDN can distribute  the resources of your plugin 
 across multiple servers, reducing the latency and improving the speed of your plugin. 

 By following these best practices for minimizing HTTP requests, you can reduce the load 
 time of your WordPress plugin and provide a faster, more responsive user experience. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 34 

http://www.studiowdev.click/


 Additionally, reducing the number of HTTP requests can help to improve the scalability of 
 your plugin, ensuring that it can handle increased traffic and usage over time. 

 Optimizing database queries 

 Optimizing database queries is an important aspect of performance optimization in 
 WordPress plugin development. The way in which you interact with the database can have a 
 significant impact on the speed and efficiency of your plugin. 

 Here are some strategies for optimizing database queries in WordPress plugins: 

 Use the get_posts function instead of query_posts  :  get_posts is a more efficient method of 
 querying the database than query_posts, as it does not modify the main query and is 
 optimized for use in sidebars and other widget areas. 

 Use transients  : Transients are a type of caching mechanism  in WordPress that allow you to 
 cache the results of database queries for a specified amount of time. This reduces the 
 number of queries required and speeds up the overall performance of your plugin. 

 Use the WP_Query class  : The WP_Query class is a powerful  tool for querying the database in 
 WordPress. It allows you to specify the parameters of your query, including the post type, 
 categories, tags, and more. 

 Use the get_posts method with suppress_filters set to true  : The get_posts method can be 
 used to query the database, but by setting suppress_filters to true, you can prevent filters 
 from modifying the query, which can improve its efficiency. 

 Use the pre_get_posts action  : The pre_get_posts action  allows you to modify the main query 
 before it is executed, giving you the ability to optimize your queries for improved 
 performance. 

 By following these best practices for optimizing database queries, you can reduce the 
 latency and improve the speed of your WordPress plugin. Additionally, optimizing your 
 database queries can help to ensure that your plugin is scalable, allowing it to handle 
 increased traffic and usage over time. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 35 

http://www.studiowdev.click/


 Using caching to improve performance 

 Using caching to improve performance is a key aspect of WordPress plugin development. 
 Caching allows you to store frequently used data so that it can be retrieved quickly, reducing 
 the number of database queries required and improving the overall performance of your 
 plugin. 

 Here are some strategies for using caching to improve performance in WordPress plugins: 

 Use transients  : Transients are a type of caching mechanism  in WordPress that allow you to 
 cache the results of database queries for a specified amount of time. This reduces the 
 number of queries required and speeds up the overall performance of your plugin. 

 Use object caching  : Object caching is a way to store  the results of complex database 
 queries in memory, allowing you to retrieve the data quickly without the need to make a new 
 query. This is a powerful tool for improving the performance of your plugin, particularly for 
 data that is used frequently. 

 Use page caching:  Page caching is a type of caching  that stores the complete HTML output 
 of a page in memory, allowing it to be retrieved quickly without the need to re-run the code or 
 make additional database queries. 

 Use browser caching  : Browser caching allows you to  store resources, such as images and 
 CSS files, on the user's browser, reducing the number of requests required to load a page and 
 improving the overall performance of your plugin. 

 By implementing these caching techniques, you can significantly improve the performance 
 of your WordPress plugin, reducing latency and increasing its scalability. Additionally, 
 caching can help to ensure that your plugin is able to handle increased traffic and usage over 
 time, making it a vital component of any performance optimization strategy. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 36 

http://www.studiowdev.click/


 Deploying and Distributing Your WordPress Plugin 

 Preparing your plugin for distribution 

 Preparing your plugin for distribution involves several key steps to ensure that it is ready to 
 be released and used by others. Here are some of the key steps involved in preparing a 
 WordPress plugin for distribution: 

 Finalize your code  : Before distributing your plugin,  you should make sure that it is polished, 
 tested, and free of any bugs or errors. You should also document your code and include 
 comments that explain how it works and what it does. 

 Add plugin header information:  The plugin header is  an important part of your plugin that 
 contains information about your plugin, such as its name, description, and author. You 
 should update the plugin header to include accurate and up-to-date information about your 
 plugin. 

 Compress your plugin  : You should compress your plugin  into a ZIP file, making sure that all 
 of the necessary files are included and that the file structure is consistent and easy to 
 understand. 

 Create a readme file  : A readme file is an important  part of any plugin and provides users 
 with information about how to install and use your plugin. You should create a clear and 
 concise readme file that includes installation instructions, screenshots, and information 
 about how to use your plugin. 

 Test your plugin  : Before distributing your plugin,  you should test it thoroughly on a live 
 WordPress installation. This will help you to identify any issues and make sure that your 
 plugin is compatible with different WordPress installations. 

 Get your plugin reviewed  : You may want to consider  having your plugin reviewed by a 
 professional WordPress developer to ensure that it meets the highest standards of quality 
 and security. This can help to build confidence in your plugin and make it more appealing to 
 users. 

 By following these steps, you can prepare your WordPress plugin for distribution and ensure 
 that it is ready to be used by others. Whether you plan to distribute your plugin on the 
 WordPress repository or on your own website, these steps will help you to create a 
 high-quality plugin that is both user-friendly and secure. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 37 

http://www.studiowdev.click/


 Creating a readme file 

 A readme file is an important part of any WordPress plugin and provides users with 
 information about how to install and use your plugin. Here are some key points to consider 
 when creating a readme file for your plugin: 

 Introduction  : Start with a brief introduction to your  plugin, including what it does and why it's 
 useful. This can help to attract users and build interest in your plugin. 

 Installation instructions  : Provide clear and concise  instructions for installing your plugin, 
 including any requirements or dependencies that users need to be aware of. 

 Usage instructions:  Explain how to use your plugin,  including any features or options that 
 users need to be aware of. Consider including screenshots or videos to help users 
 understand how to use your plugin. 

 FAQs  : Include a section with frequently asked questions  (FAQs) that users might have about 
 your plugin. This can help to provide quick answers to common questions and reduce the 
 number of support requests you receive. 

 Compatibility  : List the versions of WordPress that  your plugin has been tested with and any 
 known compatibility issues. 

 Support  : Provide information about how users can get  support for your plugin, including an 
 email address or support forum. Consider offering paid support options if you plan to make 
 your plugin available for purchase. 

 Credits  : List any third-party libraries or tools that  your plugin uses, along with the names of 
 any contributors or co-authors. 

 Changelog  : Keep a record of changes to your plugin  in a changelog section, including 
 version numbers and brief descriptions of what has been added or changed in each update. 

 By following these guidelines, you can create a comprehensive readme file that provides 
 users with the information they need to install and use your WordPress plugin. A well-written 
 readme file can help to build confidence in your plugin and make it more appealing to users. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 38 

http://www.studiowdev.click/


 Submitting your plugin to the WordPress plugin repository 

 Submitting your plugin to the WordPress plugin repository is a great way to make it available 
 to a large audience and to receive feedback from other users. Here are the steps you need to 
 follow to submit your plugin: 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 39 

http://www.studiowdev.click/


 Prepare your plugin for distribution  : Before you submit  your plugin, make sure it is ready for 
 distribution. Test it thoroughly, optimize its performance, and make sure all of the necessary 
 files and documentation are included. 

 Create a readme file  : A readme file is essential for  your plugin. It should contain information 
 about what your plugin does, how to install and use it, and any other information that users 
 may need to know. 

 Compress your plugin  : Once you have your readme file  and all of the necessary files, 
 compress them into a .zip file. 

 Go to the plugin repository  : Log in to your WordPress  account and go to the plugin 
 repository (https://wordpress.org/plugins/). 

 Submit your plugin  : Click on the "Add New" button  and select "Upload Plugin." Choose the 
 .zip file that contains your plugin and readme file and click "Install Now." 

 Complete the plugin submission form  : Fill in the required  information about your plugin, 
 including its name, description, version, author, and other details. 

 Submit your plugin:  Once you have completed the form,  click the "Submit" button to submit 
 your plugin for review. 

 It may take several days or even weeks for your plugin to be reviewed and approved. Once it 
 is approved, it will be available for download in the plugin repository, and you can start 
 receiving feedback from users. 

 Distributing your plugin through other channels 

 In addition to submitting your plugin to the WordPress plugin repository, there are other 
 channels you can use to distribute your plugin: 

 Your website  : If you have a website, you can offer  your plugin for download directly from 
 your site. This can be a great way to build your brand and drive traffic to your site. 

 Paid marketplaces  : There are several paid marketplaces,  such as CodeCanyon, where you 
 can sell your plugin. These marketplaces offer a wide audience and the ability to earn 
 revenue from your plugin. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 40 

http://www.studiowdev.click/


 Freelance platforms  : If you're a freelance developer, you can offer your plugin for sale on 
 platforms like Upwork, Freelancer, or Fiverr. 

 Social media  : Share your plugin on social media to  reach a wider audience. This can include 
 platforms like Twitter, Facebook, and LinkedIn. 

 Regardless of the distribution channel you choose, make sure to promote your plugin and 
 provide excellent support to your users. This will help to build a positive reputation and 
 increase the success of your plugin. 

 Conclusion 

 Summary of what you learned 

 In this e-book, you learned about the process of creating plugins for WordPress. You learned 
 about the importance of having a local development environment, setting up a development 
 workspace, and understanding the anatomy of a WordPress plugin. You also learned about 
 writing plugin functions, testing your plugin, and using actions and filters. 

 You explored the different ways to add functionality to your plugin, including adding settings, 
 creating custom post types, custom fields, shortcodes, and custom pages. You also learned 
 about integrating with JavaScript and jQuery, and the importance of security in WordPress 
 plugin development. 

 You learned about the steps you need to take to prepare your plugin for distribution, 
 including creating a readme file and submitting it to the WordPress plugin repository, or 
 distributing it through other channels such as your website, paid marketplaces, freelance 
 platforms, or social media. 

 In summary, you gained a comprehensive understanding of the WordPress plugin 
 development process, and are equipped with the knowledge and tools you need to create 
 your own plugin and make it available to the WordPress community. 

 Next steps 

 Now that you have completed this e-book on Creating Plugins for WordPress, it's time to put 
 your newfound knowledge into practice. Here are some next steps you can take to further 
 your skills and continue learning: 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 41 

http://www.studiowdev.click/


 Create your first plugin  : Start by creating a simple plugin that implements one of the 
 concepts covered in this e-book. As you gain more experience, you can expand your plugin to 
 include more features and functionality. 

 Participate in the WordPress community  : The WordPress  community is a great resource for 
 learning and getting feedback on your plugins. You can participate in online forums, attend 
 local meetups, or contribute to the WordPress core or other open-source plugins. 

 Study existing plugins  : Take a look at some of the  most popular plugins available in the 
 WordPress repository to see how they have been implemented and learn from their code. 

 Continue learning  : The world of WordPress plugin development  is constantly evolving, with 
 new techniques, tools, and best practices being developed all the time. Stay up-to-date by 
 regularly reading blogs and articles about WordPress plugin development, and attending 
 relevant workshops, webinars, or conferences. 

 Get feedback  : Share your plugins with others, and  ask for feedback on your code, design, 
 and functionality. This will help you to improve your skills and create better plugins. 

 By following these next steps, you can continue to grow as a WordPress plugin developer 
 and make a valuable contribution to the WordPress community. 

 Additional resources 

 Online communities and forums: 
 1. WordPress Plugins Forum -  https://wordpress.org/support/plugin/ 
 2. Plugin Reviews Forum -  https://wordpress.org/support/plugin-reviews/ 
 3. WordPress Plugin Tutorials Forum -  https://www.wpbeginner.com/forums/forum/plugins/ 
 4. WP Plugins Community Forum - https://wordpress.org/support/plugin-developers/ 
 5. WordPress Plugin Development Forum - 
 https://wordpress.org/support/plugin-development/ 
 6. WordPress Plugin Reviews Forum -  https://wordpress.org/support/plugins/reviews/ 
 7. WordPress Plugin Support Forum -  https://wordpress.org/support/plugin-support/ 

 WordPress codex:  https://codex.wordpress.org/Main_Page  , 
 WordPress plugin development handbook  . 

 Official WordPress plugin repository  :  https://wordpress.org/plugins/ 

 Blogs and tutorials: 
 1. WPMU Dev Blog -  https://premium.wpmudev.org/blog/ 
 2. WPBeginner Blog -  https://www.wpbeginner.com/blog/ 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 42 

https://wordpress.org/support/plugin/
https://wordpress.org/support/plugin-reviews/
https://www.wpbeginner.com/forums/forum/plugins/
https://wordpress.org/support/plugin-development/
https://wordpress.org/support/plugins/reviews/
https://wordpress.org/support/plugin-support/
https://codex.wordpress.org/Main_Page
https://developer.wordpress.org/plugins/
https://wordpress.org/plugins/
https://premium.wpmudev.org/blog/
https://www.wpbeginner.com/blog/
http://www.studiowdev.click/


 3. WPExplorer Blog -  https://www.wpexplorer.com/blog/ 
 4. WordPress Plugin Tutorials -  https://codex.wordpress.org/Plugin_API/Tutorials 
 5. Torque Magazine -  https://torquemag.io/category/wordpress/plugins/ 
 6. WordPress Plugin Tutorials -  https://www.wpbeginner.com/category/tutorials/plugins/ 
 7. WP Mayor Blog -  https://www.wpmayor.com/category/wordpress-plugins/ 

 YouTube videos: 
 1. How to Install WordPress Plugins -  https://www.youtube.com/watch?v=sKs8HXsBkqA 
 2. How to Use WordPress Plugins -  https://www.youtube.com/watch?v=SyvXDY_i3qg 
 3. How to Create a WordPress Plugin -  https://www.youtube.com/watch?v=nAj8WYrmhfQ 
 4. How to Customize WordPress Plugins -  https://www.youtube.com/watch?v=BX5Y5c1pfvs 
 5. How to Update WordPress Plugins -  https://www.youtube.com/watch?v=uV7BAoEKg0Q 
 6. How to Troubleshoot WordPress Plugins - 
 https://www.youtube.com/watch?v=X9p5cJjKVyw 
 7. How to Develop WordPress Plugins -  https://www.youtube.com/watch?v=7mBfphDhV7w 

 Books and e-books: 
 1. Professional WordPress Plugin Development - 
 https://www.amazon.com/Professional-WordPress-Plugin-Development-Williams/dp/11188 
 93886 
 2. WordPress Plugin Development Cookbook - 
 https://www.amazon.com/WordPress-Plugin-Development-Cookbook-Williams/dp/1847197 
 687 
 3. WordPress Plugin Development - 
 https://www.amazon.com/WordPress-Plugin-Development-Dzikowski-ebook/dp/B07PJ3CX3 
 F 
 4. WordPress Plugin Development Beginner's Guide - 
 https://www.amazon.com/WordPress-Plugin-Development-Beginners-Guide-ebook/dp/B01E 
 7V6ZS4 
 5. WordPress Plugin Design Patterns - 
 https://www.amazon.com/WordPress-Plugin-Design-Patterns-Aloysius/dp/1484225068 
 6. WordPress Plugin Development Essentials - 
 https://www.amazon.com/WordPress-Plugin-Development-Essentials-Carroll/dp/178934164 
 2 
 7. WordPress Plugin Development with React - 
 https://www.amazon.com/WordPress-Plugin-Development-React-Richards/ 

 Commercial plugins and services: 
 1. Gravity Forms -  https://www.gravityforms.com/ 
 2. Advanced Custom Fields -  https://www.advancedcustomfields.com/ 
 3. WPForms -  https://wpforms.com/ 
 4. Yoast SEO -  https://yoast.com/wordpress/plugins/seo/ 
 5. Screaming Frog SEO Spider -  https://www.screamingfrog.co.uk/seo-spider/ 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 43 

https://www.wpexplorer.com/blog/
https://codex.wordpress.org/Plugin_API/Tutorials
https://torquemag.io/category/wordpress/plugins/
https://www.wpbeginner.com/category/tutorials/plugins/
https://www.wpmayor.com/category/wordpress-plugins/
https://www.youtube.com/watch?v=sKs8HXsBkqA
https://www.youtube.com/watch?v=SyvXDY_i3qg
https://www.youtube.com/watch?v=nAj8WYrmhfQ
https://www.youtube.com/watch?v=BX5Y5c1pfvs
https://www.youtube.com/watch?v=uV7BAoEKg0Q
https://www.youtube.com/watch?v=X9p5cJjKVyw
https://www.youtube.com/watch?v=7mBfphDhV7w
https://www.amazon.com/Professional-WordPress-Plugin-Development-Williams/dp/1118893886
https://www.amazon.com/Professional-WordPress-Plugin-Development-Williams/dp/1118893886
https://www.amazon.com/WordPress-Plugin-Development-Cookbook-Williams/dp/1847197687
https://www.amazon.com/WordPress-Plugin-Development-Cookbook-Williams/dp/1847197687
https://www.amazon.com/WordPress-Plugin-Development-Dzikowski-ebook/dp/B07PJ3CX3F
https://www.amazon.com/WordPress-Plugin-Development-Dzikowski-ebook/dp/B07PJ3CX3F
https://www.amazon.com/WordPress-Plugin-Development-Beginners-Guide-ebook/dp/B01E7V6ZS4
https://www.amazon.com/WordPress-Plugin-Development-Beginners-Guide-ebook/dp/B01E7V6ZS4
https://www.amazon.com/WordPress-Plugin-Design-Patterns-Aloysius/dp/1484225068
https://www.amazon.com/WordPress-Plugin-Development-Essentials-Carroll/dp/1789341642
https://www.amazon.com/WordPress-Plugin-Development-Essentials-Carroll/dp/1789341642
https://www.amazon.com/WordPress-Plugin-Development-React-Richards/
https://www.gravityforms.com/
https://www.advancedcustomfields.com/
https://wpforms.com/
https://yoast.com/wordpress/plugins/seo/
https://www.screamingfrog.co.uk/seo-spider/
http://www.studiowdev.click/


 6. Constant Contact -  https://www.constantcontact.com/ 
 7. Akismet -  https://akismet.com/ 

 Final thoughts 

 Plugins are an incredibly powerful way to enhance the functionality and appearance of 
 WordPress websites. With plugins, website owners and developers are able to create unique 
 and custom experiences for their users. 

 Plugins can be used to add features to a website such as contact forms, shopping carts, and 
 social media integration. Plugins can also be used to customize the look and feel of a 
 website, allowing website owners to create a unique look and feel for their website without 
 having to code from scratch. Additionally, plugins can be used to extend the functionality of 
 existing themes and plugins to make them more powerful and useful. 

 Some plugins can also be used to optimize and improve the performance of a website, such 
 as caching plugins and security plugins. Caching plugins can help speed up a website by 
 reducing the load time of a page, while security plugins can help protect a website from 
 hackers and malicious software. 

 Finally, plugins can also be used to integrate third-party services into a website, such as 
 payment gateways, email marketing services, and analytics. Integrating these services can 
 help website owners and developers track user behavior and gain valuable insights into their 
 customers. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 44 

https://www.constantcontact.com/
https://akismet.com/
http://www.studiowdev.click/


 As a plugin developer, it is essential to stay up-to-date on the latest developments in 
 WordPress and web development in general. Keeping up with the latest advancements in the 
 field allows developers to remain competitive and successful in plugin development. 

 By staying up-to-date on the latest WordPress developments, developers can ensure that 
 their plugins are optimized and compatible with the latest version of WordPress. Developing 
 plugins for the latest version helps developers stay ahead of the curve and increases the 
 likelihood that their plugin will be compatible with the majority of websites. 

 Additionally, staying up-to-date on the latest developments in web development and 
 programming allows developers to use the latest tools and techniques to create plugins that 
 are secure, efficient, and user-friendly. 

 Finally, staying up-to-date on the latest developments in the field of plugin development 
 allows developers to stay ahead of their competition and increase their chances of creating 
 successful plugins. By staying informed, developers can ensure that their plugins are 
 competitive in the market and have the best chance of being chosen by users. 

 The WordPress community is a vibrant and supportive group of users and developers who 
 are passionate about creating powerful and user-friendly plugins. The community is full of 
 resources and support for those looking to learn more about plugin development and 
 improve their skills. 

 The WordPress Codex is a comprehensive online resource that provides detailed information 
 on how to develop plugins for WordPress. It includes tutorials, documentation, and helpful 
 tips and tricks to help developers get started. Additionally, there are plenty of online forums 
 and discussion boards where developers can ask questions, share ideas, and get help from 
 other members of the WordPress community. 

 The WordPress Plugin Repository is another great resource for developers looking to learn 
 more about plugin development. It contains a wealth of information about existing plugins, 
 as well as reviews and reviews from other developers on how to make the most of 
 WordPress plugins. 

 Finally, the WordPress community is full of talented and experienced developers who are 
 always willing to lend a helping hand. Developers can find mentors, join user groups, and 
 attend conferences and workshops to network with other developers and learn from their 
 experience. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 45 

http://www.studiowdev.click/


 Thank you for taking the time to read this e-book about creating plugins for WordPress. I 
 hope that you have found the information in this book informative and helpful. 

 WordPress plugin development is an exciting and ever-evolving field, and I am confident that 
 you have the potential to become an expert plugin developer. I encourage you to keep 
 exploring the world of WordPress plugin development and to make use of the resources and 
 support available in the WordPress community. 

 I would like to thank you once again for your time and attention. I wish you all the best in your 
 WordPress plugin development endeavors. 

 Appendices 

 Examples & Instructions of code ready WordPress plugins 

 1.  Code for a simple  cashing  Wordpress plugin 

 <?php 
 /* 
 Plugin Name: Simple Cache 
 Description: A simple caching plugin for WordPress. 
 Version: 1.0 
 Author: YourName 
 */ 

 class  Simple_Cache  { 
 private  $cache_dir; 

 public  function  __construct  () { 
 $this  ->cache_dir = WP_CONTENT_DIR .  '/cache/'  ; 
 add_action(  'init'  ,  array  (  $this  ,  'init'  ) ); 

 } 

 public  function  init  () { 
 if  (  $this  ->is_cacheable() ) { 
 ob_start(  array  (  $this  ,  'cache_response'  ) ); 

 }  elseif  (  $this  ->is_cached() ) { 
 $this  ->serve_cache(); 

 } 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 46 

http://www.studiowdev.click/


 } 

 private  function  is_cacheable  () { 
 // Don't cache pages that have query parameters  or aren't GET 

 requests. 
 if  ( count( $_GET ) || $_SERVER[  'REQUEST_METHOD'  ]  !==  'GET'  ) 

 { 
 return  false  ; 

 } 

 // Don't cache pages that are served over SSL. 
 if  ( is_ssl() ) { 
 return  false  ; 

 } 

 // Don't cache pages that require authentication. 
 if  ( is_user_logged_in() ) { 
 return  false  ; 

 } 

 return  true  ; 
 } 

 private  function  is_cached  () { 
 $cache_file =  $this  ->get_cache_file(); 

 if  ( ! file_exists( $cache_file ) ) { 
 return  false  ; 

 } 

 // Check if the cache file is older than 1 hour. 
 if  ( time() - filemtime( $cache_file ) >=  3600  ) { 
 unlink( $cache_file ); 
 return  false  ; 

 } 

 return  true  ; 
 } 

 private  function  serve_cache  () { 
 echo  file_get_contents(  $this  ->get_cache_file()  ); 
 exit  ; 

 } 

 private  function  cache_response  ( $content ) { 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 47 

http://www.studiowdev.click/


 file_put_contents(  $this  ->get_cache_file(), $content  ); 
 return  $content; 

 } 

 private  function  get_cache_file  () { 
 return  $this  ->cache_dir . md5( $_SERVER[  'REQUEST_URI'  ]  ) . 

 '.html'  ; 
 } 

 } 

 new  Simple_Cache(); 

 This is a basic example of how caching can be implemented in a WordPress plugin. The 
 code creates a new instance of the Simple_Cache class, which sets up a WordPress action 
 to buffer the page output using ob_start(). If the page is cacheable, the output will be saved 
 to a file in the cache/ directory within the wp-content/ directory. On subsequent requests, the 
 plugin will check if a cached version of the page is available and, if so, serve the cached 
 content instead of re-generating the page. 

 Note that this is just one example of how caching can be implemented in WordPress, and 
 there are many other ways to approach the problem. You may need to modify this code to fit 
 the specific requirements of your plugin or website. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 48 

http://www.studiowdev.click/


 2. Code for a simple  performance  Wordpress plugin 

 Here's an example of a simple performance optimization WordPress plugin that minifies 
 HTML, CSS, and JavaScript files to reduce their size and improve loading time. 

 <?php 
 /* 
 Plugin Name: Simple Performance Optimization Plugin 
 Description: Minifies HTML, CSS, and JavaScript files to improve 
 performance. 
 Author: YourName 
 Version: 1.0 
 */ 

 class  SimplePerformanceOptimization  { 
 public  function  __construct  () { 

 add_filter(  'print_scripts_array'  ,  array  (  $this  , 
 'minify_scripts'  )); 

 add_filter(  'print_styles_array'  ,  array  (  $this  , 
 'minify_styles'  )); 

 add_action(  'template_redirect'  ,  array  (  $this  , 
 'minify_html'  )); 

 } 

 public  function  minify_scripts  ($scripts) { 
 $minified_scripts =  array  (); 
 foreach  ($scripts  as  $script) { 

 $minified_scripts[] =  $this  ->minify_js($script); 
 } 
 return  $minified_scripts; 

 } 

 public  function  minify_styles  ($styles) { 
 $minified_styles =  array  (); 
 foreach  ($styles  as  $style) { 

 $minified_styles[] =  $this  ->minify_css($style); 
 } 
 return  $minified_styles; 

 } 

 public  function  minify_html  () { 
 ob_start(  array  (  $this  ,  'minify_html_output'  )); 

 } 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 49 

http://www.studiowdev.click/


 public  function  minify_js  ($script) { 
 // Minify the JavaScript code here. 
 return  $script; 

 } 

 public  function  minify_css  ($style) { 
 // Minify the CSS code here. 
 return  $style; 

 } 

 public  function  minify_html_output  ($html) { 
 // Minify the HTML code here. 
 return  $html; 

 } 
 } 

 new  SimplePerformanceOptimization(); 

 This plugin hooks into the print_scripts_array and print_styles_array filters to minify 
 JavaScript and CSS files, respectively. It also uses the template_redirect action to minify the 
 HTML output of the page. The actual minification of the files is done in the minify_js, 
 minify_css, and minify_html_output functions, but these have been left empty in the example 
 for brevity. You can use a library such as Minify or an online minifier to perform the actual 
 minification. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 50 

http://www.studiowdev.click/


 3. Code for a simple  SEO optimization  plugin for WordPress. 

 <?php 
 /* 
 Plugin Name: SEO Optimization Plugin 
 Plugin URI: https://example.com 
 Description: This plugin provides SEO optimization features like 
 title and meta tags, sitemaps, social media integration, and more. 
 Version: 1.0 
 Author: YourName 
 Author URI: http://example.com 
 License: GPL2 
 */ 

 // Metabox 
 function  seo_metabox  () { 

 add_meta_box( 
 'seo_metabox'  , 
 'SEO Optimization'  , 
 'seo_metabox_content'  , 
 'post'  , 
 'normal'  , 
 'high' 

 ); 
 } 
 add_action(  'add_meta_boxes'  ,  'seo_metabox'  ); 

 // Metabox content 
 function  seo_metabox_content  () { 

 // Add content to the metabox 
 } 

 // Save metabox values 
 function  save_seo_metabox  ($post_id) { 

 // Save metabox values 
 } 
 add_action(  'save_post'  ,  'save_seo_metabox'  ); 

 // Generate sitemap 
 function  generate_sitemap  () { 

 // Generate sitemap 
 } 

 // Activate plugin 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 51 

http://www.studiowdev.click/


 register_activation_hook(  __FILE__  ,  'generate_sitemap'  ); 

 ?> 

 4. Code for a simple  Backup and Recovery  Wordpress  plugin 

 <?php 
 /* 
 * Plugin Name: Backup and Recovery 
 * Plugin URI: https://example.com/backup-and-recovery 
 * Description: A simple backup and recovery plugin for WordPress. 
 * Version: 1.0 
 * Author: YourName 
 * Author URI: https://example.com 
 * License: GPLv2 or later 
 */ 

 class Backup_And_Recovery { 
 function __construct() { 

 add_action( 'admin_menu', array( $this, 'add_menu_page' ) 
 ); 

 add_action( 'admin_init', array( $this, 
 'register_settings' ) ); 

 } 

 function add_menu_page() { 
 add_management_page( 'Backup and Recovery', 'Backup and 

 Recovery', 'manage_options', 'backup-and-recovery', array( $this, 
 'render_page' ) ); 

 } 

 function register_settings() { 
 register_setting( 'backup-and-recovery-settings', 

 'backup-and-recovery-settings', array( $this, 'validate_settings' 
 ) ); 

 } 

 function validate_settings( $input ) { 
 $output = array(); 

 $output['backup_interval'] = intval( 
 $input['backup_interval'] ); 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 52 

http://www.studiowdev.click/


 return $output; 
 } 

 function render_page() { 
 if ( ! current_user_can( 'manage_options' ) ) { 

 wp_die( 'You do not have sufficient permissions to 
 access this page.' ); 

 } 
 ?> 
 <div class="wrap"> 

 <h2>Backup and Recovery</h2> 
 <form method="post" action="options.php"> 

 <?php 
 settings_fields( 

 'backup-and-recovery-settings' ); 
 do_settings_sections( 

 'backup-and-recovery-settings' ); 
 ?> 
 <table class="form-table"> 

 <tr valign="top"> 
 <th scope="row">Backup Interval</th> 
 <td> 

 <input type="text" 
 name="backup-and-recovery-settings[backup_interval]" value="<?php 
 echo esc_attr( get_option( 'backup-and-recovery-settings' 
 )['backup_interval'] ); ?>" /> 

 <p class="description">Enter the 
 number of days between backups.</p> 

 </td> 
 </tr> 

 </table> 
 <?php submit_button(); ?> 

 </form> 
 </div> 
 <?php 

 } 
 } 

 new Backup_And_Recovery(); 

 Note that this is just a basic example and it may require more features and customization 
 to make it work in your specific use case. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 53 

http://www.studiowdev.click/


 5. Code for an  Image Optimization  Wordpress plugin 

 An image optimization plugin can improve the performance of a WordPress site by 
 compressing images and reducing their file size without sacrificing quality. The plugin can 
 automatically optimize images as they are uploaded to the media library, or it can allow 
 users to manually optimize images that have already been uploaded. 

 Here is a basic example of how you can achieve image optimization in your WordPress 
 plugin: 

 <?php 
 /* 
 Plugin Name: Image Optimization 
 Description: Automatically optimizes images as they are uploaded 
 to the media library. 
 Version: 1.0 
 Author: Your Name 
 */ 

 function optimize_images_on_upload($image_data) { 

 // Get the uploaded image data 
 $image = $image_data['data']; 

 // Use a third-party image optimization library to compress 
 the image 

 $compressed_image = compress_image($image); 

 // Overwrite the uploaded image with the compressed image 
 $image_data['data'] = $compressed_image; 

 return $image_data; 
 } 

 add_filter('wp_handle_upload_prefilter', 
 'optimize_images_on_upload'); 

 Note: In this example, the compress_image function is a hypothetical function that 
 represents the image compression process. You would need to replace this with your 
 preferred image optimization library or method. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 54 

http://www.studiowdev.click/


 This is just a basic example to give you an idea of how you can get started with an Image 
 Optimization WordPress plugin. You can expand on this by adding options for users to 
 choose different levels of compression, displaying optimization statistics, etc. 

 6. Code for an  Analytics and Tracking  Wordpress plugin 

 A basic plugin structure for tracking analytics could look like this: 

 <?php 
 /* 
 Plugin Name: Analytics and Tracking 
 Plugin URI: http://yourwebsite.com/analytics-and-tracking 
 Description: A simple plugin for tracking website analytics and 
 data. 
 Version: 1.0 
 Author: Your Name 
 Author URI: http://yourwebsite.com 
 */ 

 // Add tracking code to header 
 function add_analytics_tracking_code() { 

 // Add your tracking code, such as Google Analytics tracking 
 code, here 

 echo "<script> 
 // Your tracking code here 
 </script>"; 

 } 
 add_action( 'wp_head', 'add_analytics_tracking_code' ); 

 // Create settings page for the plugin 
 function analytics_and_tracking_settings_page() { 

 add_menu_page( 'Analytics and Tracking', 'Analytics and 
 Tracking', 'manage_options', 'analytics-and-tracking', 
 'analytics_and_tracking_settings', 'dashicons-chart-bar', 80 ); 
 } 
 add_action( 'admin_menu', 'analytics_and_tracking_settings_page' 
 ); 

 // Display settings page content 
 function analytics_and_tracking_settings() { 

 // Code for the settings page 
 } 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 55 

http://www.studiowdev.click/


 // Register plugin settings 
 function register_analytics_and_tracking_settings() { 

 // Register your plugin settings here 
 register_setting( 'analytics-and-tracking-settings-group', 

 'analytics-and-tracking-code' ); 
 } 
 add_action( 'admin_init', 
 'register_analytics_and_tracking_settings' ); 

 This is just a basic structure and would need to be customized to your specific needs and 
 requirements. You would need to add more functions to retrieve and display the analytics 
 data, set up the tracking code, and add additional settings for the plugin. But this should 
 give you a good starting point for building your own Analytics and Tracking plugin for 
 WordPress. 

 7. Code for a simple  Security and Protection  Wordpress  plugin 

 Here is an example of what a simple security plugin for WordPress could look like: 

 <?php 
 /* 
 Plugin Name: Simple Security and Protection 
 Description: A simple security plugin for WordPress. 
 Version: 1.0 
 Author: Your Name 
 */ 

 function simple_security_and_protection() { 
 // prevent directory browsing 
 if (!defined('ABSPATH')) { 

 die('Forbidden'); 
 } 

 // hide wp-version info 
 remove_action('wp_head', 'wp_generator'); 
 function remove_version() { 

 return ''; 
 } 
 add_filter('the_generator', 'remove_version'); 

 // limit login attempts 
 if (!class_exists('Login_Security')) { 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 56 

http://www.studiowdev.click/


 class Login_Security { 
 public function __construct() { 

 add_filter('authenticate', [$this, 
 'check_attempts'], 30, 3); 

 add_action('wp_login_failed', [$this, 
 'login_failed']); 

 add_action('wp_authenticate', [$this, 
 'authenticate']); 

 } 

 // track failed login attempts 
 public function login_failed($username) { 

 $ip = $this->get_ip(); 
 $attempts = get_transient('attempts_' . $ip); 
 if (!$attempts) { 

 $attempts = 1; 
 } else { 

 $attempts++; 
 } 
 set_transient('attempts_' . $ip, $attempts, 600); 

 } 

 // authenticate user and check for max login attempts 
 public function authenticate($user, $username, 

 $password) { 
 $ip = $this->get_ip(); 
 $attempts = get_transient('attempts_' . $ip); 
 if ($attempts >= 5) { 

 return new WP_Error('denied', 
 __("<strong>ERROR</strong>: Too many failed login attempts, please 
 try again in 10 minutes.")); 

 } 
 return $user; 

 } 

 // get user IP address 
 private function get_ip() { 

 if (!empty($_SERVER['HTTP_CLIENT_IP'])) { 
 return $_SERVER['HTTP_CLIENT_IP']; 

 } elseif 
 (!empty($_SERVER['HTTP_X_FORWARDED_FOR'])) { 

 return $_SERVER['HTTP_X_FORWARDED_FOR']; 
 } else { 

 return $_SERVER['REMOTE_ADDR']; 
 } 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 57 

http://www.studiowdev.click/


 } 
 } 
 new Login_Security(); 

 } 
 } 
 add_action('plugins_loaded', 'simple_security_and_protection'); 

 Please note that this code is just a basic example and should be reviewed and customized 
 to fit your specific needs. It is important to thoroughly test the plugin before using it on a 
 live website, and to stay up-to-date with the latest security best practices. 

 8. Code for a  Greetings  Wordpress plugin 

 <?php 
 /* 
 Plugin Name: Custom Greeting 
 Description: Adds a custom greeting to the website 
 Version: 1.0 
 Author: Your Name 
 */ 

 function custom_greeting_function() { 
 echo '<p style="color: green; font-size: 18px;">Welcome to our 

 website!</p>'; 
 } 

 add_action('wp_footer', 'custom_greeting_function'); 

 ?> 

 This plugin creates a custom function custom_greeting_function that outputs a green 
 message, "Welcome to our website!". The add_action function is used to hook the function 
 to the wp_footer action, which is executed just before the closing </body> tag in a 
 WordPress page. As a result, the custom greeting will appear at the bottom of every page 
 on the website. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 58 

http://www.studiowdev.click/


 9. Code of a plugin that  adds custom widgets  to the  WordPress dashboard 

 <?php 
 /* 
 Plugin Name: Dashboard Widgets 
 Description: Adds custom widgets to the WordPress dashboard 
 Version: 1.0 
 Author: Your Name 
 Author URI: https://yourwebsite.com 
 */ 

 class Dashboard_Widgets { 

 // Class constructor 
 public function __construct() { 
 add_action( 'wp_dashboard_setup', array( $this, 'add_widgets' 

 ) ); 
 } 

 // Adds custom widgets to the WordPress dashboard 
 public function add_widgets() { 
 wp_add_dashboard_widget( 
 'dashboard_widget_1', 
 'Important Dates', 
 array( $this, 'display_important_dates_widget' ) 

 ); 

 wp_add_dashboard_widget( 
 'dashboard_widget_2', 
 'News and Updates', 
 array( $this, 'display_news_and_updates_widget' ) 

 ); 
 } 

 // Displays the Important Dates widget 
 public function display_important_dates_widget() { 
 echo '<p>Upcoming holidays:</p>'; 
 echo '<ul>'; 
 echo '<li>January 1st: New Year\'s Day</li>'; 
 echo '<li>July 4th: Independence Day</li>'; 
 echo '<li>December 25th: Christmas Day</li>'; 
 echo '</ul>'; 

 } 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 59 

http://www.studiowdev.click/


 // Displays the News and Updates widget 
 public function display_news_and_updates_widget() { 
 echo '<p>Check out our latest blog post:</p>'; 
 echo '<p><a 

 href="https://yourwebsite.com/latest-blog-post/">How to Optimize 
 Your Website for Search Engines</a></p>'; 
 } 

 } 

 new Dashboard_Widgets(); 

 This plugin creates two custom widgets that display on the WordPress dashboard. The 
 first widget shows a list of upcoming holidays, and the second widget provides a link to 
 the latest blog post on your website. 

 10. Code for a plugin that adds a  responsive full-screen  slider  with customizable 
 images and captions 

 <?php 
 /* 
 Plugin Name: Impressive Slider 
 Description: A responsive full-screen slider for your website with 
 custom images and captions 
 Version: 1.0 
 Author: YourName 
 */ 

 class Impressive_Slider { 
 public function __construct() { 

 add_action( 'wp_enqueue_scripts', array( $this, 
 'enqueue_scripts' ) ); 

 add_shortcode( 'impressive_slider', array( $this, 
 'impressive_slider_shortcode' ) ); 

 add_action( 'wp_ajax_impressive_slider_images', array( 
 $this, 'impressive_slider_images' ) ); 

 add_action( 'wp_ajax_nopriv_impressive_slider_images', 
 array( $this, 'impressive_slider_images' ) ); 

 } 

 public function enqueue_scripts() { 
 wp_enqueue_style( 'impressive-slider', plugin_dir_url( 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 60 

http://www.studiowdev.click/


 __FILE__ ) . 'css/impressive-slider.css' ); 
 wp_enqueue_script( 'impressive-slider', plugin_dir_url( 

 __FILE__ ) . 'js/impressive-slider.js', array( 'jquery' ), '1.0', 
 true ); 

 wp_localize_script( 'impressive-slider', 
 'impressive_slider', array( 

 'ajax_url' => admin_url( 'admin-ajax.php' ) 
 ) ); 

 } 

 public function impressive_slider_shortcode() { 
 $output = '<div id="impressive-slider-wrap"></div>'; 
 return $output; 

 } 

 public function impressive_slider_images() { 
 $images = get_posts( array( 

 'post_type' => 'attachment', 
 'post_mime_type' => 'image', 
 'posts_per_page' => -1, 
 'post_status' => 'any' 

 ) ); 

 $image_data = array(); 
 foreach ( $images as $image ) { 

 $image_data[] = array( 
 'id' => $image->ID, 
 'url' => wp_get_attachment_url( $image->ID 

 ), 
 'caption' => $image->post_excerpt 

 ); 
 } 

 wp_send_json( $image_data ); 
 } 

 } 
 new Impressive_Slider(); 

 Note: This plugin uses AJAX to retrieve all of the images from the media library and 
 passes them to the front-end JavaScript, where they are then displayed in a full-screen 
 slider. You will also need to create the following directories and files to make this plugin 
 work: 

 css/impressive-slider.css - the styles for the slider 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 61 

http://www.studiowdev.click/


 js/impressive-slider.js - the JavaScript for the slider 

 11. Code of a plugin that  adds a custom post type  for "Books"  and displays the latest 
 books on the front-end of the website 

 <?php 
 /* 
 Plugin Name: Book List 
 Description: A simple plugin that adds a custom post type for 
 "Books" and displays the latest books on the front-end of the 
 website. 
 Version: 1.0 
 Author: YourName 
 */ 

 function create_book_post_type() { 
 register_post_type( 'book', 
 array( 
 'labels' => array( 
 'name' => __( 'Books' ), 
 'singular_name' => __( 'Book' ) 

 ), 
 'public' => true, 
 'has_archive' => true, 
 'supports' => array( 'title', 'editor', 'thumbnail' ) 

 ) 
 ); 

 } 
 add_action( 'init', 'create_book_post_type' ); 

 function display_latest_books() { 
 $args = array( 
 'post_type' => 'book', 
 'posts_per_page' => 5 

 ); 
 $book_query = new WP_Query( $args ); 
 if ( $book_query->have_posts() ) { 
 echo '<h2>Latest Books</h2>'; 
 echo '<ul>'; 
 while ( $book_query->have_posts() ) { 
 $book_query->the_post(); 
 echo '<li><a href="' . get_the_permalink() . '">' . 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 62 

http://www.studiowdev.click/


 get_the_title() . '</a></li>'; 
 } 
 echo '</ul>'; 

 } 
 wp_reset_postdata(); 

 } 
 add_shortcode( 'book_list', 'display_latest_books' ); 

 This plugin will create a new custom post type "Books", and display the latest 5 books on 
 the front-end of the website using a shortcode. To display the books, you can use the 
 shortcode [book_list] in any post or page. 

 12. Code for a plugin that adds a  custom footer message  to all pages of the website 

 <?php 
 /** 
 * Plugin Name: Custom Footer Message 
 * Plugin URI: http://example.com 
 * Description: Adds a custom message to the footer of your 
 website. 
 * Version: 1.0 
 * Author: Your Name 
 * Author URI: http://example.com 
 * License: GPL2 
 */ 

 // Add the custom footer message 
 function custom_footer_message() { 

 echo '<p style="text-align:center;">Copyright &copy; ' . 
 date('Y') . ' <a href="' . get_home_url() . '">' . 
 get_bloginfo('name') . '</a></p>'; 

 echo '<p style="text-align:center;">Powered by <a 
 href="https://wordpress.org/">WordPress</a></p>'; 
 } 
 add_action('wp_footer', 'custom_footer_message'); 

 This plugin adds a custom footer message to the footer of your website, which includes 
 the current year and the name of your website, as well as a message indicating that the 
 website is powered by WordPress. The custom_footer_message function is hooked to the 
 wp_footer action, which is executed in the footer of all pages of the website. The output of 
 the function is controlled by the echo statements, which add the custom footer message 
 to the website. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 63 

http://www.studiowdev.click/


 13. Code for a plugin that allows users to easily  add and customize a contact form 

 <?php 
 /* 
 Plugin Name: Contact Form Plugin 
 Description: A simple plugin to add and customize contact forms on 
 your website 
 Version: 1.0 
 Author: YourName 
 */ 

 class Contact_Form_Plugin { 

 public function __construct() { 
 add_shortcode( 'contact_form', array( $this, 

 'contact_form_shortcode' ) ); 
 } 

 public function contact_form_shortcode( $atts ) { 
 $atts = shortcode_atts( array( 
 'email' => get_option( 'admin_email' ), 
 'subject' => 'Contact Form Submission' 

 ), $atts ); 

 ob_start(); 
 ?> 
 <form action="<?php echo esc_url( $_SERVER['REQUEST_URI'] ); 

 ?>" method="post"> 
 <p> 
 <label for="cf-name">Name: <span 

 class="required">*</span></label> 
 <input type="text" id="cf-name" name="cf-name" 

 required="required"> 
 </p> 
 <p> 
 <label for="cf-email">Email: <span 

 class="required">*</span></label> 
 <input type="email" id="cf-email" name="cf-email" 

 required="required"> 
 </p> 
 <p> 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 64 

http://www.studiowdev.click/


 <label for="cf-message">Message: <span 
 class="required">*</span></label> 

 <textarea id="cf-message" name="cf-message" 
 required="required"></textarea> 

 </p> 
 <p> 
 <input type="submit" value="Send"> 

 </p> 
 <input type="hidden" name="cf-submitted" value="1"> 
 <input type="hidden" name="cf-subject" value="<?php echo 

 esc_attr( $atts['subject'] ); ?>"> 
 <input type="hidden" name="cf-to" value="<?php echo 

 esc_attr( $atts['email'] ); ?>"> 
 </form> 
 <?php 
 return ob_get_clean(); 

 } 

 } 

 new Contact_Form_Plugin(); 

 In this plugin, we have created a shortcode [contact_form] that can be used to display the 
 contact form on any page or post. The form collects the user's name, email, and message 
 and submits the data to the specified email address. The email address, subject, and other 
 details can be easily customized by passing attributes to the shortcode. 

 14. Code for a basic  social sharing button  plugin 

 <?php 
 /* 
 Plugin Name: Social Sharing Buttons 
 Plugin URI: https://example.com/social-sharing-buttons 
 Description: Adds social sharing buttons to your website 
 Version: 1.0 
 Author: YourName 
 Author URI: https://example.com 
 */ 

 // Function to output the social sharing buttons 
 function social_sharing_buttons() { 
 $current_url = urlencode(get_permalink()); 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 65 

http://www.studiowdev.click/


 $title = urlencode(get_the_title()); 
 ?> 
 <div class="social-sharing"> 
 <a href="https://www.facebook.com/sharer.php?u=<?php echo 

 $current_url; ?>" target="_blank"> 
 <i class="fa fa-facebook"></i> Share on Facebook 

 </a> 
 <a href="https://twitter.com/intent/tweet?text=<?php echo 

 $title; ?>&url=<?php echo $current_url; ?>" target="_blank"> 
 <i class="fa fa-twitter"></i> Share on Twitter 

 </a> 
 <a 

 href="https://www.linkedin.com/shareArticle?mini=true&url=<?php 
 echo $current_url; ?>&title=<?php echo $title; ?>" 
 target="_blank"> 

 <i class="fa fa-linkedin"></i> Share on LinkedIn 
 </a> 

 </div> 
 <?php 

 } 

 // Add the social sharing buttons to the content 
 add_filter('the_content', 'social_sharing_buttons'); 

 This is just a basic example and there are many ways to extend and customize the plugin 
 to meet your needs. This plugin uses the Font Awesome library for the social media icons, 
 so you would need to include the Font Awesome CSS file in your theme. 

 Practical guidances 

 Steps to complete the activation and running of a WordPress plugin 

 Prepare the plugin code  : Once you have written the  code for your WordPress plugin, you 
 need to put it into a .zip file and make sure it follows the correct file structure. 

 Upload the plugin to your WordPress site  : To upload  your plugin to your WordPress site, 
 go to the "Plugins" section of your WordPress dashboard, and click the "Add New" button. 
 Then click the "Upload Plugin" button and select the .zip file you prepared in step 1. 

 Activate the plugin  : Once your plugin has been successfully  uploaded, you will be taken to 
 the plugin activation page. Simply click the "Activate" button to activate your plugin. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 66 

http://www.studiowdev.click/


 Configure the plugin settings  : Depending on the type  of plugin you have created, there 
 may be some additional settings that need to be configured. Go to the "Settings" section 
 of your WordPress dashboard to access the configuration options for your plugin. 

 Test the plugin  : Now that your plugin is activated  and configured, you need to test it to 
 make sure it is working as expected. If there are any bugs or issues with your plugin, this is 
 the time to fix them. 

 Update the plugin documentation  : Finally, make sure  that the documentation for your 
 plugin is up-to-date and provides clear instructions for how to use and configure it. This 
 will help users understand how to get the most out of your plugin and reduce the number 
 of support requests you receive. 

 The plugin files 

 The first step to complete the activation and running of a WordPress plugin is to place the 
 plugin files in the correct location. The plugin files should be placed in a separate folder 
 within the "wp-content/plugins" directory of your WordPress installation. The name of the 
 folder should be the same as the name of your plugin and should contain all of the 
 necessary files for the plugin to work properly. This includes the main plugin file, any 
 additional PHP files, CSS and JavaScript files, and any images or other assets. 

 It is important to ensure that the plugin files are properly structured and organized so that 
 they can be easily maintained and updated in the future. This may include separating the 
 plugin's code into different files based on its functionality and organizing these files in a 
 logical manner. 

 Once the plugin files are in place, you can activate the plugin from the WordPress admin 
 area by going to the "Plugins" section, finding your plugin in the list of available plugins, 
 and clicking the "Activate" button. 

 It is important to test your plugin thoroughly after activation to ensure that it is functioning 
 correctly and that there are no conflicts with other plugins or the theme being used on the 
 website. This can be done by using a staging website or by performing a series of tests on 
 a live website. Any issues or errors that are found should be corrected before the plugin is 
 released to the public or shared with others. 

 Note: The above procedure is alternatively implemented by creating a .zip file as explained 
 in earlier chapters and upload it to the plugins page in your dashboard. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 67 

http://www.studiowdev.click/


 The anatomy and the structure of the WordPress plugin 

 The anatomy of a WordPress plugin consists of several elements that must be present in 
 the code in order to function correctly. These elements are: 

 Plugin Header  : The plugin header is a block of information  located at the top of the plugin 
 file. It contains information about the plugin such as its name, description, author, and 
 version number. 

 Functions  : Functions are the core of a WordPress plugin.  They contain the code that will 
 be executed when the plugin is activated. Functions can be called from templates, 
 widgets, or other plugins, and they can interact with the WordPress database. 

 Action Hooks:  Action hooks are the main way that plugins  can interact with the WordPress 
 core. They allow the plugin to run specific code when certain events occur, such as when a 
 post is published or when a user logs in. 

 Filter Hooks  : Filter hooks work in a similar way to  action hooks, but they are used to 
 modify data before it is displayed on the website. For example, a plugin might use a filter 
 hook to change the content of a post before it is displayed. 

 Shortcodes  : Shortcodes are small pieces of code that  can be added to posts, pages, and 
 widgets to add dynamic content to the site. For example, a plugin might use a shortcode 
 to display a form or a map on the website. 

 Widgets  : Widgets are small blocks of content that  can be added to widget-ready areas of a 
 theme. They can be used to display recent posts, Twitter feeds, or other types of content. 

 Settings  : Most plugins need to have some type of settings  page where the user can 
 configure the plugin. The settings page can be created using the WordPress settings API, 
 which provides a simple way to add options to the WordPress dashboard. 

 Internationalization  : If the plugin is intended to  be used by users from different countries, 
 it is important to include internationalization (i18n) support. This involves wrapping all text 
 strings in the plugin with functions that allow them to be translated into other languages. 

 The structure of a WordPress plugin can vary, but most plugins follow a similar pattern. 
 The plugin header is typically followed by the functions that make up the main part of the 
 plugin. These functions are then hooked into the WordPress core using action and filter 
 hooks. Finally, the plugin will typically include a settings page and support for 
 internationalization. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 68 

http://www.studiowdev.click/


 What is included in the .zip file of a Wordpress plugin 

 A Wordpress plugin must have the following elements included in its .zip file: 

 Plugin Folder  : The folder should contain all the necessary  files that make up your plugin. 
 This folder should have the same name as the plugin and should be named in all 
 lowercase letters with hyphens separating words. 

 Plugin File (main plugin file)  : This file is the main  plugin file and it must have the same 
 name as the folder with a .php extension. The plugin file serves as the main entry point for 
 the plugin and contains the plugin header information and the plugin’s functions. 

 Plugin Header Information  : The plugin header information,  also known as plugin header 
 meta data, provides information about the plugin such as the plugin name, author, version, 
 and description. This information is stored in a comment block at the top of the plugin file 
 and is used by Wordpress to display information about the plugin. 

 Plugin Functions  : The functions are the code that  powers your plugin and are stored in the 
 main plugin file. Functions are usually organized in groups that are related to specific 
 tasks or features, such as setting up the plugin, displaying the plugin’s content, and 
 handling user interactions. 

 CSS, JavaScript and Images  : If your plugin requires  any styling, interaction or custom 
 images, you should include these files in your plugin folder. These files should be kept 
 separate from the main plugin file, and you should use WordPress’ enqueue function to 
 add them to your plugin. 

 Language Files  : If your plugin supports multiple languages,  you should include a 
 languages folder that contains translation files for each language your plugin supports. 

 All these elements work together to make your plugin work. The plugin header information 
 provides information about the plugin to Wordpress, the functions contain the code that 
 powers your plugin, and the CSS, JavaScript, images and language files enhance the look 
 and functionality of the plugin. 

 The elements that are typically included in a .zip file when creating a WordPress plugin 

 plugin-name.php  : This is the main plugin file, which  contains the header information, the 
 plugin activation/deactivation functions, and the main functions of the plugin. 

 readme.txt  : This file contains information about the  plugin, including its version, author, 
 and description. It is usually required for the plugin to be submitted to the WordPress 
 repository. 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 69 

http://www.studiowdev.click/


 languages  : This folder contains the translations for  the plugin, if it is being translated into 
 different languages. 

 assets  : This folder contains any assets such as images  or stylesheets that are used by the 
 plugin. 

 templates  : This folder contains the template files  used by the plugin, if it includes any 
 templates. 

 admin  : This folder contains the files needed for the  plugin's administration panel, such as 
 settings pages and options. 

 includes  : This folder contains the additional files  that are used by the plugin, such as 
 classes or functions. 

 Licensing  : This file contains information about the  plugin's licensing, including the type of 
 license and the terms of use. 

 The structure of the plugin is important to ensure that the plugin is organized and easy to 
 maintain. When creating a plugin, it's a good idea to stick to this structure, or a similar one, 
 so that others can easily understand and work with the plugin in the future. 

 Examples for each of the main files that should be included in a .zip file for a 
 Wordpress plugin 

 plugin-name.php  : This is the main plugin file and  it contains the plugin header and plugin 
 code. 

 <?php 
 /** 
 * Plugin Name: Your Plugin Name 
 * Plugin URI: http://example.com/your-plugin-name 
 * Description: A brief description of your plugin. 
 * Version: 1.0 
 * Author: Your Name 
 * Author URI: http://example.com 
 * License: GPL2 
 */ 

 // Your plugin code here. 

 readme.txt:  This file provides detailed information  about the plugin, including installation 
 instructions, usage, and compatibility information. 

 === Your Plugin Name === 
 Contributors: Your Name 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 70 

http://www.studiowdev.click/


 Tags: wordpress, plugin, example 
 Requires at least: 4.9 
 Tested up to: 5.7 
 Stable tag: 1.0 
 License: GPLv2 or later 
 License URI: https://www.gnu.org/licenses/gpl-2.0.html 

 A brief description of your plugin. 

 == Installation == 
 1. Upload the plugin files to the 
 ̀/wp-content/plugins/your-plugin-name` directory, or install the 
 plugin through the WordPress plugins screen directly. 
 2. Activate the plugin through the 'Plugins' screen in WordPress. 
 3. Use the Settings->Plugin Name screen to configure the plugin. 

 == Usage == 

 Provide detailed instructions on how to use the plugin. 

 == Frequently Asked Questions == 

 = Can this plugin do X? = 

 Answer any questions that users may have about the plugin. 

 == Screenshots == 

 Provide screenshots of your plugin in action. 

 == Changelog == 

 = 1.0 = 
 * Initial release. 

 == Upgrade Notice == 

 = 1.0 = 
 * Initial release. 

 CSS and JavaScript files  : These files contain the  styles and scripts needed for the plugin 
 to function properly. 

 // CSS file 
 .your-class-name { 
 color: blue; 

 } 

 // JavaScript file 
 jQuery(document).ready(function($) { 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 71 

http://www.studiowdev.click/


 $('.your-class-name').click(function() { 
 alert('Your plugin is working!'); 

 }); 
 }); 

 Images  : Any images used in the plugin, such as icons  or logos, should also be included in 
 the .zip file. 

 Other files  : If your plugin requires additional files,  such as language files or templates, they 
 should also be included in the .zip file. 

 GOOD LUCK !!! 

 Vangelis Kakouras - How to make your own plugins in WordPress -  www.studiowdev.click 
 72 

http://www.studiowdev.click/

